128 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			128 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @file    testVisualISAM2.cpp | ||
|  |  * @brief   Test convergence of visualSLAM example. | ||
|  |  * @author  Duy-Nguyen Ta | ||
|  |  * @author  Frank Dellaert | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <CppUnitLite/TestHarness.h>
 | ||
|  | 
 | ||
|  | #include <examples/SFMdata.h>
 | ||
|  | #include <gtsam/geometry/Point2.h>
 | ||
|  | #include <gtsam/inference/Symbol.h>
 | ||
|  | #include <gtsam/nonlinear/ISAM2.h>
 | ||
|  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | ||
|  | #include <gtsam/nonlinear/Values.h>
 | ||
|  | #include <gtsam/slam/PriorFactor.h>
 | ||
|  | #include <gtsam/slam/ProjectionFactor.h>
 | ||
|  | 
 | ||
|  | #include <vector>
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(testVisualISAM2, all) | ||
|  | { | ||
|  |     Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); | ||
|  | 
 | ||
|  |     auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); | ||
|  | 
 | ||
|  |     // Create ground truth data
 | ||
|  |     vector<Point3> points = createPoints(); | ||
|  |     vector<Pose3> poses = createPoses(); | ||
|  | 
 | ||
|  |     // Set the parameters
 | ||
|  |     ISAM2Params parameters; | ||
|  |     parameters.relinearizeThreshold = 0.01; | ||
|  |     parameters.relinearizeSkip = 1; | ||
|  |     ISAM2 isam(parameters); | ||
|  | 
 | ||
|  |     // Create a Factor Graph and Values to hold the new data
 | ||
|  |     NonlinearFactorGraph graph; | ||
|  |     Values initialEstimate; | ||
|  | 
 | ||
|  |     // Loop over the poses, adding the observations to iSAM incrementally
 | ||
|  |     for (size_t i = 0; i < poses.size(); ++i) | ||
|  |     { | ||
|  |         // Add factors for each landmark observation
 | ||
|  |         for (size_t j = 0; j < points.size(); ++j) | ||
|  |         { | ||
|  |             SimpleCamera camera(poses[i], *K); | ||
|  |             Point2 measurement = camera.project(points[j]); | ||
|  |             graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2>>( | ||
|  |                 measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K); | ||
|  |         } | ||
|  | 
 | ||
|  |         // Add an initial guess for the current pose
 | ||
|  |         // Intentionally initialize the variables off from the ground truth
 | ||
|  |         static Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25), | ||
|  |                                 Point3(0.05, -0.10, 0.20)); | ||
|  |         initialEstimate.insert(Symbol('x', i), poses[i] * kDeltaPose); | ||
|  | 
 | ||
|  |         // Treat first iteration as special case
 | ||
|  |         if (i == 0) | ||
|  |         { | ||
|  |             // Add a prior on pose x0, 30cm std on x,y,z and 0.1 rad on roll,pitch,yaw
 | ||
|  |             static auto kPosePrior = noiseModel::Diagonal::Sigmas( | ||
|  |                 (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)) | ||
|  |                     .finished()); | ||
|  |             graph.emplace_shared<PriorFactor<Pose3>>(Symbol('x', 0), poses[0], | ||
|  |                                                      kPosePrior); | ||
|  | 
 | ||
|  |             // Add a prior on landmark l0
 | ||
|  |             static auto kPointPrior = noiseModel::Isotropic::Sigma(3, 0.1); | ||
|  |             graph.emplace_shared<PriorFactor<Point3>>(Symbol('l', 0), points[0], | ||
|  |                                                       kPointPrior); | ||
|  | 
 | ||
|  |             // Add initial guesses to all observed landmarks
 | ||
|  |             // Intentionally initialize the variables off from the ground truth
 | ||
|  |             static Point3 kDeltaPoint(-0.25, 0.20, 0.15); | ||
|  |             for (size_t j = 0; j < points.size(); ++j) | ||
|  |                 initialEstimate.insert<Point3>(Symbol('l', j), points[j] + kDeltaPoint); | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             // Update iSAM with the new factors
 | ||
|  |             isam.update(graph, initialEstimate); | ||
|  | 
 | ||
|  |             // Do an extra update to converge withing these 8 iterations
 | ||
|  |             isam.update(); | ||
|  | 
 | ||
|  |             // Optimize
 | ||
|  |             Values currentEstimate = isam.calculateEstimate(); | ||
|  | 
 | ||
|  |             // reset for next iteration
 | ||
|  |             graph.resize(0); | ||
|  |             initialEstimate.clear(); | ||
|  |         } | ||
|  |     } // for loop
 | ||
|  | 
 | ||
|  |     auto result = isam.calculateEstimate(); | ||
|  |     EXPECT_LONGS_EQUAL(16, result.size()); | ||
|  |     for (size_t j = 0; j < points.size(); ++j) | ||
|  |     { | ||
|  |         Symbol key('l', j); | ||
|  |         EXPECT(assert_equal(points[j], result.at<Point3>(key), 0.01)); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main() | ||
|  | { | ||
|  |     TestResult tr; | ||
|  |     return TestRegistry::runAllTests(tr); | ||
|  | } | ||
|  | /* ************************************************************************* */ |