gtsam/gtsam/navigation/CombinedImuFactor.h

289 lines
11 KiB
C
Raw Normal View History

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file CombinedImuFactor.h
* @author Luca Carlone
* @author Stephen Williams
* @author Richard Roberts
* @author Vadim Indelman
* @author David Jensen
* @author Frank Dellaert
**/
#pragma once
/* GTSAM includes */
2014-11-03 18:02:15 +08:00
#include <gtsam/nonlinear/NonlinearFactor.h>
2014-12-27 01:23:14 +08:00
#include <gtsam/navigation/PreintegrationBase.h>
#include <gtsam/base/Matrix.h>
namespace gtsam {
/*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating
* conditionally independent sets in factor graphs: a unifying perspective based
* on smart factors, Int. Conf. on Robotics and Automation (ICRA), 2014.
*
* REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups",
* Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for
* High-Dynamic Motion in Built Environments Without Initial Conditions",
* TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
* Computation of the Jacobian Matrices", Tech. Report, 2013.
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, IMU Preintegration on
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,
* Robotics: Science and Systems (RSS), 2015.
*/
/**
* PreintegratedCombinedMeasurements integrates the IMU measurements
* (rotation rates and accelerations) and the corresponding covariance matrix.
* The measurements are then used to build the CombinedImuFactor. Integration
* is done incrementally (ideally, one integrates the measurement as soon as
* it is received from the IMU) so as to avoid costly integration at time of
* factor construction.
*
* @addtogroup SLAM
*/
class PreintegratedCombinedMeasurements : public PreintegrationBase {
/// Parameters for pre-integration:
/// Usage: Create just a single Params and pass a shared pointer to the constructor
struct Params : PreintegrationBase::Params {
Matrix3 biasAccCovariance; ///< continuous-time "Covariance" describing accelerometer bias random walk
Matrix3 biasOmegaCovariance; ///< continuous-time "Covariance" describing gyroscope bias random walk
Matrix6 biasAccOmegaInit; ///< covariance of bias used for pre-integration
/// See two named constructors below for good values of n_gravity in body frame
Params(const Vector3& n_gravity) :
PreintegrationBase::Params(n_gravity), biasAccCovariance(I_3x3), biasOmegaCovariance(
2015-07-23 23:00:07 +08:00
I_3x3), biasAccOmegaInit(I_6x6) {
}
// Default Params for a Z-down navigation frame, such as NED: gravity points along positive Z-axis
static boost::shared_ptr<Params> MakeSharedD(double g = 9.81) {
2015-07-23 23:00:07 +08:00
return boost::make_shared<Params>(Vector3(0, 0, g));
}
// Default Params for a Z-up navigation frame, such as ENU: gravity points along negative Z-axis
static boost::shared_ptr<Params> MakeSharedU(double g = 9.81) {
2015-07-23 23:00:07 +08:00
return boost::make_shared<Params>(Vector3(0, 0, -g));
}
private:
2015-07-23 23:00:07 +08:00
/// Default constructor makes unitialized params struct
Params() {}
/** Serialization function */
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegratedRotation::Params);
ar& BOOST_SERIALIZATION_NVP(biasAccCovariance);
ar& BOOST_SERIALIZATION_NVP(biasOmegaCovariance);
ar& BOOST_SERIALIZATION_NVP(biasAccOmegaInit);
}
};
protected:
/* Covariance matrix of the preintegrated measurements
* COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION BiasAcc BiasOmega]
* (first-order propagation from *measurementCovariance*).
* PreintegratedCombinedMeasurements also include the biases and keep the correlation
* between the preintegrated measurements and the biases
*/
Eigen::Matrix<double, 15, 15> preintMeasCov_;
PreintegratedCombinedMeasurements() {}
friend class CombinedImuFactor;
public:
/**
* Default constructor, initializes the class with no measurements
* @param bias Current estimate of acceleration and rotation rate biases
*/
PreintegratedCombinedMeasurements(const boost::shared_ptr<Params>& p,
const imuBias::ConstantBias& biasHat)
: PreintegrationBase(p, biasHat) {
preintMeasCov_.setZero();
}
Params& p() const { return *boost::static_pointer_cast<Params>(p_);}
/// print
void print(const std::string& s = "Preintegrated Measurements:") const;
/// equals
bool equals(const PreintegratedCombinedMeasurements& expected,
double tol = 1e-9) const;
/// Re-initialize PreintegratedCombinedMeasurements
void resetIntegration();
/**
* Add a single IMU measurement to the preintegration.
* @param measuredAcc Measured acceleration (in body frame, as given by the
* sensor)
* @param measuredOmega Measured angular velocity (as given by the sensor)
* @param deltaT Time interval between two consecutive IMU measurements
* @param body_P_sensor Optional sensor frame (pose of the IMU in the body
* frame)
*/
2015-08-01 06:32:16 +08:00
void integrateMeasurement(const Vector3& measuredAcc,
const Vector3& measuredOmega, double deltaT);
/// methods to access class variables
Matrix preintMeasCov() const { return preintMeasCov_; }
/// deprecated constructor
/// NOTE(frank): assumes Z-Down convention, only second order integration supported
PreintegratedCombinedMeasurements(const imuBias::ConstantBias& biasHat,
const Matrix3& measuredAccCovariance,
const Matrix3& measuredOmegaCovariance,
const Matrix3& integrationErrorCovariance,
const Matrix3& biasAccCovariance, const Matrix3& biasOmegaCovariance,
2015-07-23 23:00:07 +08:00
const Matrix6& biasAccOmegaInit, const bool use2ndOrderIntegration = true);
private:
/// Serialization function
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(PreintegrationBase);
ar& BOOST_SERIALIZATION_NVP(preintMeasCov_);
}
};
/**
2014-12-27 01:23:14 +08:00
* CombinedImuFactor is a 6-ways factor involving previous state (pose and
* velocity of the vehicle, as well as bias at previous time step), and current
* state (pose, velocity, bias at current time step). Following the pre-
* integration scheme proposed in [2], the CombinedImuFactor includes many IMU
* measurements, which are "summarized" using the PreintegratedCombinedMeasurements
2014-12-27 01:23:14 +08:00
* class. There are 3 main differences wrpt the ImuFactor class:
* 1) The factor is 6-ways, meaning that it also involves both biases (previous
* and current time step).Therefore, the factor internally imposes the biases
* to be slowly varying; in particular, the matrices "biasAccCovariance" and
* "biasOmegaCovariance" described the random walk that models bias evolution.
* 2) The preintegration covariance takes into account the noise in the bias
* estimate used for integration.
* 3) The covariance matrix of the PreintegratedCombinedMeasurements preserves
2014-12-27 01:23:14 +08:00
* the correlation between the bias uncertainty and the preintegrated
* measurements uncertainty.
*
* @addtogroup SLAM
*/
class CombinedImuFactor: public NoiseModelFactor6<Pose3, Vector3, Pose3,
Vector3, imuBias::ConstantBias, imuBias::ConstantBias> {
public:
private:
typedef CombinedImuFactor This;
typedef NoiseModelFactor6<Pose3, Vector3, Pose3, Vector3,
imuBias::ConstantBias, imuBias::ConstantBias> Base;
PreintegratedCombinedMeasurements _PIM_;
/** Default constructor - only use for serialization */
CombinedImuFactor() {}
public:
/** Shorthand for a smart pointer to a factor */
#if !defined(_MSC_VER) && __GNUC__ == 4 && __GNUC_MINOR__ > 5
typedef typename boost::shared_ptr<CombinedImuFactor> shared_ptr;
#else
typedef boost::shared_ptr<CombinedImuFactor> shared_ptr;
#endif
/**
* Constructor
* @param pose_i Previous pose key
* @param vel_i Previous velocity key
* @param pose_j Current pose key
* @param vel_j Current velocity key
* @param bias_i Previous bias key
* @param bias_j Current bias key
* @param PreintegratedCombinedMeasurements Combined IMU measurements
*/
CombinedImuFactor(
Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
const PreintegratedCombinedMeasurements& preintegratedMeasurements);
virtual ~CombinedImuFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const;
/** implement functions needed for Testable */
/// print
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const;
/// equals
virtual bool equals(const NonlinearFactor& expected, double tol = 1e-9) const;
/** Access the preintegrated measurements. */
const PreintegratedCombinedMeasurements& preintegratedMeasurements() const {
return _PIM_;
}
/** implement functions needed to derive from Factor */
/// vector of errors
Vector evaluateError(const Pose3& pose_i, const Vector3& vel_i,
const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias_i, const imuBias::ConstantBias& bias_j,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none, boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none, boost::optional<Matrix&> H5 =
boost::none, boost::optional<Matrix&> H6 = boost::none) const;
/// @deprecated typename
typedef gtsam::PreintegratedCombinedMeasurements CombinedPreintegratedMeasurements;
/// @deprecated constructor
CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i,
Key bias_j, const CombinedPreintegratedMeasurements& pim,
const Vector3& n_gravity, const Vector3& omegaCoriolis,
const boost::optional<Pose3>& body_P_sensor = boost::none,
const bool use2ndOrderCoriolis = false);
// @deprecated use PreintegrationBase::predict
static void Predict(const Pose3& pose_i, const Vector3& vel_i, Pose3& pose_j,
Vector3& vel_j, const imuBias::ConstantBias& bias_i,
2015-07-19 16:52:23 +08:00
CombinedPreintegratedMeasurements& pim,
const Vector3& n_gravity, const Vector3& omegaCoriolis,
const bool use2ndOrderCoriolis = false);
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
2015-03-06 23:12:09 +08:00
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & boost::serialization::make_nvp("NoiseModelFactor6",
boost::serialization::base_object<Base>(*this));
2014-12-27 01:23:14 +08:00
ar & BOOST_SERIALIZATION_NVP(_PIM_);
}
};
// class CombinedImuFactor
} /// namespace gtsam