| 
									
										
										
										
											2012-10-09 06:40:40 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation,  | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * @file    testGaussianISAM.cpp | 
					
						
							|  |  |  |  * @brief   Unit tests for GaussianISAM | 
					
						
							|  |  |  |  * @author  Michael Kaess | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <tests/smallExample.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Ordering.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Symbol.h>
 | 
					
						
							|  |  |  | #include <gtsam/linear/GaussianSequentialSolver.h>
 | 
					
						
							|  |  |  | #include <gtsam/linear/GaussianMultifrontalSolver.h>
 | 
					
						
							|  |  |  | #include <gtsam/geometry/Rot2.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <CppUnitLite/TestHarness.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <boost/foreach.hpp>
 | 
					
						
							|  |  |  | #include <boost/assign/std/list.hpp> // for operator +=
 | 
					
						
							|  |  |  | using namespace boost::assign; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | using namespace example; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using symbol_shorthand::X; | 
					
						
							|  |  |  | using symbol_shorthand::L; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // Some numbers that should be consistent among all smoother tests
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static double sigmax1 = 0.786153, /*sigmax2 = 1.0/1.47292,*/ sigmax3 = 0.671512, sigmax4 = | 
					
						
							|  |  |  |     0.669534 /*, sigmax5 = sigmax3, sigmax6 = sigmax2*/, sigmax7 = sigmax1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static const double tol = 1e-4; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* *
 | 
					
						
							|  |  |  |  Bayes tree for smoother with "natural" ordering: | 
					
						
							|  |  |  | C1 x6 x7 | 
					
						
							|  |  |  | C2   x5 : x6 | 
					
						
							|  |  |  | C3     x4 : x5 | 
					
						
							|  |  |  | C4       x3 : x4 | 
					
						
							|  |  |  | C5         x2 : x3 | 
					
						
							|  |  |  | C6           x1 : x2 | 
					
						
							|  |  |  | **************************************************************************** */ | 
					
						
							| 
									
										
										
										
											2012-10-28 14:21:17 +08:00
										 |  |  | TEST( GaussianBayesTree, linear_smoother_shortcuts ) | 
					
						
							| 
									
										
										
										
											2012-10-09 06:40:40 +08:00
										 |  |  | { | 
					
						
							|  |  |  |   // Create smoother with 7 nodes
 | 
					
						
							|  |  |  |   Ordering ordering; | 
					
						
							|  |  |  |   GaussianFactorGraph smoother; | 
					
						
							|  |  |  |   boost::tie(smoother, ordering) = createSmoother(7); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   GaussianBayesTree bayesTree = *GaussianMultifrontalSolver(smoother).eliminate(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create the Bayes tree
 | 
					
						
							|  |  |  |   LONGS_EQUAL(6, bayesTree.size()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the conditional P(Root|Root)
 | 
					
						
							|  |  |  |   GaussianBayesNet empty; | 
					
						
							|  |  |  |   GaussianBayesTree::sharedClique R = bayesTree.root(); | 
					
						
							|  |  |  |   GaussianBayesNet actual1 = R->shortcut(R, EliminateCholesky); | 
					
						
							|  |  |  |   EXPECT(assert_equal(empty,actual1,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the conditional P(C2|Root)
 | 
					
						
							|  |  |  |   GaussianBayesTree::sharedClique C2 = bayesTree[ordering[X(5)]]; | 
					
						
							|  |  |  |   GaussianBayesNet actual2 = C2->shortcut(R, EliminateCholesky); | 
					
						
							|  |  |  |   EXPECT(assert_equal(empty,actual2,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the conditional P(C3|Root)
 | 
					
						
							|  |  |  |   double sigma3 = 0.61808; | 
					
						
							|  |  |  |   Matrix A56 = Matrix_(2,2,-0.382022,0.,0.,-0.382022); | 
					
						
							|  |  |  |   GaussianBayesNet expected3; | 
					
						
							|  |  |  |   push_front(expected3,ordering[X(5)], zero(2), eye(2)/sigma3, ordering[X(6)], A56/sigma3, ones(2)); | 
					
						
							|  |  |  |   GaussianBayesTree::sharedClique C3 = bayesTree[ordering[X(4)]]; | 
					
						
							|  |  |  |   GaussianBayesNet actual3 = C3->shortcut(R, EliminateCholesky); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected3,actual3,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the conditional P(C4|Root)
 | 
					
						
							|  |  |  |   double sigma4 = 0.661968; | 
					
						
							|  |  |  |   Matrix A46 = Matrix_(2,2,-0.146067,0.,0.,-0.146067); | 
					
						
							|  |  |  |   GaussianBayesNet expected4; | 
					
						
							|  |  |  |   push_front(expected4, ordering[X(4)], zero(2), eye(2)/sigma4, ordering[X(6)], A46/sigma4, ones(2)); | 
					
						
							|  |  |  |   GaussianBayesTree::sharedClique C4 = bayesTree[ordering[X(3)]]; | 
					
						
							|  |  |  |   GaussianBayesNet actual4 = C4->shortcut(R, EliminateCholesky); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected4,actual4,tol)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* *
 | 
					
						
							|  |  |  |  Bayes tree for smoother with "nested dissection" ordering: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    Node[x1] P(x1 | x2) | 
					
						
							|  |  |  |    Node[x3] P(x3 | x2 x4) | 
					
						
							|  |  |  |    Node[x5] P(x5 | x4 x6) | 
					
						
							|  |  |  |    Node[x7] P(x7 | x6) | 
					
						
							|  |  |  |    Node[x2] P(x2 | x4) | 
					
						
							|  |  |  |    Node[x6] P(x6 | x4) | 
					
						
							|  |  |  |    Node[x4] P(x4) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  becomes | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    C1     x5 x6 x4 | 
					
						
							|  |  |  |    C2      x3 x2 : x4 | 
					
						
							|  |  |  |    C3        x1 : x2 | 
					
						
							|  |  |  |    C4      x7 : x6 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2012-10-28 14:21:17 +08:00
										 |  |  | TEST( GaussianBayesTree, balanced_smoother_marginals ) | 
					
						
							| 
									
										
										
										
											2012-10-09 06:40:40 +08:00
										 |  |  | { | 
					
						
							|  |  |  |   // Create smoother with 7 nodes
 | 
					
						
							|  |  |  |   Ordering ordering; | 
					
						
							|  |  |  |   ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4); | 
					
						
							|  |  |  |   GaussianFactorGraph smoother = createSmoother(7, ordering).first; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create the Bayes tree
 | 
					
						
							|  |  |  |   GaussianBayesTree bayesTree = *GaussianMultifrontalSolver(smoother).eliminate(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   VectorValues expectedSolution(VectorValues::Zero(7,2)); | 
					
						
							|  |  |  |   VectorValues actualSolution = optimize(bayesTree); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expectedSolution,actualSolution,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   LONGS_EQUAL(4,bayesTree.size()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   double tol=1e-5; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check marginal on x1
 | 
					
						
							|  |  |  |   GaussianBayesNet expected1 = simpleGaussian(ordering[X(1)], zero(2), sigmax1); | 
					
						
							|  |  |  |   GaussianBayesNet actual1 = *bayesTree.marginalBayesNet(ordering[X(1)], EliminateCholesky); | 
					
						
							|  |  |  |   Matrix expectedCovarianceX1 = eye(2,2) * (sigmax1 * sigmax1); | 
					
						
							|  |  |  |   Matrix actualCovarianceX1; | 
					
						
							|  |  |  |   GaussianFactor::shared_ptr m = bayesTree.marginalFactor(ordering[X(1)], EliminateCholesky); | 
					
						
							|  |  |  |   actualCovarianceX1 = bayesTree.marginalFactor(ordering[X(1)], EliminateCholesky)->information().inverse(); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expectedCovarianceX1, actualCovarianceX1, tol)); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected1,actual1,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check marginal on x2
 | 
					
						
							|  |  |  |   double sigx2 = 0.68712938; // FIXME: this should be corrected analytically
 | 
					
						
							|  |  |  |   GaussianBayesNet expected2 = simpleGaussian(ordering[X(2)], zero(2), sigx2); | 
					
						
							|  |  |  |   GaussianBayesNet actual2 = *bayesTree.marginalBayesNet(ordering[X(2)], EliminateCholesky); | 
					
						
							|  |  |  |   Matrix expectedCovarianceX2 = eye(2,2) * (sigx2 * sigx2); | 
					
						
							|  |  |  |   Matrix actualCovarianceX2; | 
					
						
							|  |  |  |   actualCovarianceX2 = bayesTree.marginalFactor(ordering[X(2)], EliminateCholesky)->information().inverse(); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expectedCovarianceX2, actualCovarianceX2, tol)); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected2,actual2,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check marginal on x3
 | 
					
						
							|  |  |  |   GaussianBayesNet expected3 = simpleGaussian(ordering[X(3)], zero(2), sigmax3); | 
					
						
							|  |  |  |   GaussianBayesNet actual3 = *bayesTree.marginalBayesNet(ordering[X(3)], EliminateCholesky); | 
					
						
							|  |  |  |   Matrix expectedCovarianceX3 = eye(2,2) * (sigmax3 * sigmax3); | 
					
						
							|  |  |  |   Matrix actualCovarianceX3; | 
					
						
							|  |  |  |   actualCovarianceX3 = bayesTree.marginalFactor(ordering[X(3)], EliminateCholesky)->information().inverse(); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expectedCovarianceX3, actualCovarianceX3, tol)); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected3,actual3,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check marginal on x4
 | 
					
						
							|  |  |  |   GaussianBayesNet expected4 = simpleGaussian(ordering[X(4)], zero(2), sigmax4); | 
					
						
							|  |  |  |   GaussianBayesNet actual4 = *bayesTree.marginalBayesNet(ordering[X(4)], EliminateCholesky); | 
					
						
							|  |  |  |   Matrix expectedCovarianceX4 = eye(2,2) * (sigmax4 * sigmax4); | 
					
						
							|  |  |  |   Matrix actualCovarianceX4; | 
					
						
							|  |  |  |   actualCovarianceX4 = bayesTree.marginalFactor(ordering[X(4)], EliminateCholesky)->information().inverse(); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expectedCovarianceX4, actualCovarianceX4, tol)); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected4,actual4,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check marginal on x7 (should be equal to x1)
 | 
					
						
							|  |  |  |   GaussianBayesNet expected7 = simpleGaussian(ordering[X(7)], zero(2), sigmax7); | 
					
						
							|  |  |  |   GaussianBayesNet actual7 = *bayesTree.marginalBayesNet(ordering[X(7)], EliminateCholesky); | 
					
						
							|  |  |  |   Matrix expectedCovarianceX7 = eye(2,2) * (sigmax7 * sigmax7); | 
					
						
							|  |  |  |   Matrix actualCovarianceX7; | 
					
						
							|  |  |  |   actualCovarianceX7 = bayesTree.marginalFactor(ordering[X(7)], EliminateCholesky)->information().inverse(); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expectedCovarianceX7, actualCovarianceX7, tol)); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected7,actual7,tol)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2012-10-28 14:21:17 +08:00
										 |  |  | TEST( GaussianBayesTree, balanced_smoother_shortcuts ) | 
					
						
							| 
									
										
										
										
											2012-10-09 06:40:40 +08:00
										 |  |  | { | 
					
						
							|  |  |  |   // Create smoother with 7 nodes
 | 
					
						
							|  |  |  |   Ordering ordering; | 
					
						
							|  |  |  |   ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4); | 
					
						
							|  |  |  |   GaussianFactorGraph smoother = createSmoother(7, ordering).first; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create the Bayes tree
 | 
					
						
							|  |  |  |   GaussianBayesTree bayesTree = *GaussianMultifrontalSolver(smoother).eliminate(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the conditional P(Root|Root)
 | 
					
						
							|  |  |  |   GaussianBayesNet empty; | 
					
						
							|  |  |  |   GaussianBayesTree::sharedClique R = bayesTree.root(); | 
					
						
							|  |  |  |   GaussianBayesNet actual1 = R->shortcut(R, EliminateCholesky); | 
					
						
							|  |  |  |   EXPECT(assert_equal(empty,actual1,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the conditional P(C2|Root)
 | 
					
						
							|  |  |  |   GaussianBayesTree::sharedClique C2 = bayesTree[ordering[X(3)]]; | 
					
						
							|  |  |  |   GaussianBayesNet actual2 = C2->shortcut(R, EliminateCholesky); | 
					
						
							|  |  |  |   EXPECT(assert_equal(empty,actual2,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the conditional P(C3|Root), which should be equal to P(x2|x4)
 | 
					
						
							|  |  |  |   /** TODO: Note for multifrontal conditional:
 | 
					
						
							|  |  |  |    * p_x2_x4 is now an element conditional of the multifrontal conditional bayesTree[ordering[X(2)]]->conditional() | 
					
						
							|  |  |  |    * We don't know yet how to take it out. | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  | //  GaussianConditional::shared_ptr p_x2_x4 = bayesTree[ordering[X(2)]]->conditional();
 | 
					
						
							|  |  |  | //  p_x2_x4->print("Conditional p_x2_x4: ");
 | 
					
						
							|  |  |  | //  GaussianBayesNet expected3(p_x2_x4);
 | 
					
						
							|  |  |  | //  GaussianISAM::sharedClique C3 = isamTree[ordering[X(1)]];
 | 
					
						
							|  |  |  | //  GaussianBayesNet actual3 = GaussianISAM::shortcut(C3,R);
 | 
					
						
							|  |  |  | //  EXPECT(assert_equal(expected3,actual3,tol));
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ///* ************************************************************************* */
 | 
					
						
							|  |  |  | //TEST( BayesTree, balanced_smoother_clique_marginals )
 | 
					
						
							|  |  |  | //{
 | 
					
						
							|  |  |  | //  // Create smoother with 7 nodes
 | 
					
						
							|  |  |  | //  Ordering ordering;
 | 
					
						
							|  |  |  | //  ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
 | 
					
						
							|  |  |  | //  GaussianFactorGraph smoother = createSmoother(7, ordering).first;
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  // Create the Bayes tree
 | 
					
						
							|  |  |  | //  GaussianBayesNet chordalBayesNet = *GaussianSequentialSolver(smoother).eliminate();
 | 
					
						
							|  |  |  | //  GaussianISAM bayesTree(chordalBayesNet);
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  // Check the clique marginal P(C3)
 | 
					
						
							|  |  |  | //  double sigmax2_alt = 1/1.45533; // THIS NEEDS TO BE CHECKED!
 | 
					
						
							|  |  |  | //  GaussianBayesNet expected = simpleGaussian(ordering[X(2)],zero(2),sigmax2_alt);
 | 
					
						
							|  |  |  | //  push_front(expected,ordering[X(1)], zero(2), eye(2)*sqrt(2), ordering[X(2)], -eye(2)*sqrt(2)/2, ones(2));
 | 
					
						
							|  |  |  | //  GaussianISAM::sharedClique R = bayesTree.root(), C3 = bayesTree[ordering[X(1)]];
 | 
					
						
							|  |  |  | //  GaussianFactorGraph marginal = C3->marginal(R);
 | 
					
						
							|  |  |  | //  GaussianVariableIndex varIndex(marginal);
 | 
					
						
							|  |  |  | //  Permutation toFront(Permutation::PullToFront(C3->keys(), varIndex.size()));
 | 
					
						
							|  |  |  | //  Permutation toFrontInverse(*toFront.inverse());
 | 
					
						
							|  |  |  | //  varIndex.permute(toFront);
 | 
					
						
							|  |  |  | //  BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, marginal) {
 | 
					
						
							|  |  |  | //    factor->permuteWithInverse(toFrontInverse); }
 | 
					
						
							|  |  |  | //  GaussianBayesNet actual = *inference::EliminateUntil(marginal, C3->keys().size(), varIndex);
 | 
					
						
							|  |  |  | //  actual.permuteWithInverse(toFront);
 | 
					
						
							|  |  |  | //  EXPECT(assert_equal(expected,actual,tol));
 | 
					
						
							|  |  |  | //}
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2012-10-28 14:21:17 +08:00
										 |  |  | TEST( GaussianBayesTree, balanced_smoother_joint ) | 
					
						
							| 
									
										
										
										
											2012-10-09 06:40:40 +08:00
										 |  |  | { | 
					
						
							|  |  |  |   // Create smoother with 7 nodes
 | 
					
						
							|  |  |  |   Ordering ordering; | 
					
						
							|  |  |  |   ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4); | 
					
						
							|  |  |  |   GaussianFactorGraph smoother = createSmoother(7, ordering).first; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create the Bayes tree, expected to look like:
 | 
					
						
							|  |  |  |   //   x5 x6 x4
 | 
					
						
							|  |  |  |   //     x3 x2 : x4
 | 
					
						
							|  |  |  |   //       x1 : x2
 | 
					
						
							|  |  |  |   //     x7 : x6
 | 
					
						
							|  |  |  |   GaussianBayesTree bayesTree = *GaussianMultifrontalSolver(smoother).eliminate(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Conditional density elements reused by both tests
 | 
					
						
							|  |  |  |   const Vector sigma = ones(2); | 
					
						
							|  |  |  |   const Matrix I = eye(2), A = -0.00429185*I; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the joint density P(x1,x7) factored as P(x1|x7)P(x7)
 | 
					
						
							|  |  |  |   GaussianBayesNet expected1; | 
					
						
							|  |  |  |   // Why does the sign get flipped on the prior?
 | 
					
						
							|  |  |  |   GaussianConditional::shared_ptr | 
					
						
							|  |  |  |     parent1(new GaussianConditional(ordering[X(7)], zero(2), -1*I/sigmax7, ones(2))); | 
					
						
							|  |  |  |   expected1.push_front(parent1); | 
					
						
							|  |  |  |   push_front(expected1,ordering[X(1)], zero(2), I/sigmax7, ordering[X(7)], A/sigmax7, sigma); | 
					
						
							|  |  |  |   GaussianBayesNet actual1 = *bayesTree.jointBayesNet(ordering[X(1)],ordering[X(7)], EliminateCholesky); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected1,actual1,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //  // Check the joint density P(x7,x1) factored as P(x7|x1)P(x1)
 | 
					
						
							|  |  |  |   //  GaussianBayesNet expected2;
 | 
					
						
							|  |  |  |   //  GaussianConditional::shared_ptr
 | 
					
						
							|  |  |  |   //      parent2(new GaussianConditional(ordering[X(1)], zero(2), -1*I/sigmax1, ones(2)));
 | 
					
						
							|  |  |  |   //    expected2.push_front(parent2);
 | 
					
						
							|  |  |  |   //  push_front(expected2,ordering[X(7)], zero(2), I/sigmax1, ordering[X(1)], A/sigmax1, sigma);
 | 
					
						
							|  |  |  |   //  GaussianBayesNet actual2 = *bayesTree.jointBayesNet(ordering[X(7)],ordering[X(1)]);
 | 
					
						
							|  |  |  |   //  EXPECT(assert_equal(expected2,actual2,tol));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check the joint density P(x1,x4), i.e. with a root variable
 | 
					
						
							|  |  |  |   GaussianBayesNet expected3; | 
					
						
							|  |  |  |   GaussianConditional::shared_ptr | 
					
						
							|  |  |  |     parent3(new GaussianConditional(ordering[X(4)], zero(2), I/sigmax4, ones(2))); | 
					
						
							|  |  |  |   expected3.push_front(parent3); | 
					
						
							|  |  |  |   double sig14 = 0.784465; | 
					
						
							|  |  |  |   Matrix A14 = -0.0769231*I; | 
					
						
							|  |  |  |   push_front(expected3,ordering[X(1)], zero(2), I/sig14, ordering[X(4)], A14/sig14, sigma); | 
					
						
							|  |  |  |   GaussianBayesNet actual3 = *bayesTree.jointBayesNet(ordering[X(1)],ordering[X(4)], EliminateCholesky); | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected3,actual3,tol)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //  // Check the joint density P(x4,x1), i.e. with a root variable, factored the other way
 | 
					
						
							|  |  |  |   //  GaussianBayesNet expected4;
 | 
					
						
							|  |  |  |   //  GaussianConditional::shared_ptr
 | 
					
						
							|  |  |  |   //      parent4(new GaussianConditional(ordering[X(1)], zero(2), -1.0*I/sigmax1, ones(2)));
 | 
					
						
							|  |  |  |   //    expected4.push_front(parent4);
 | 
					
						
							|  |  |  |   //  double sig41 = 0.668096;
 | 
					
						
							|  |  |  |   //  Matrix A41 = -0.055794*I;
 | 
					
						
							|  |  |  |   //  push_front(expected4,ordering[X(4)], zero(2), I/sig41, ordering[X(1)], A41/sig41, sigma);
 | 
					
						
							|  |  |  |   //  GaussianBayesNet actual4 = *bayesTree.jointBayesNet(ordering[X(4)],ordering[X(1)]);
 | 
					
						
							|  |  |  |   //  EXPECT(assert_equal(expected4,actual4,tol));
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2012-10-28 14:21:17 +08:00
										 |  |  | TEST(GaussianBayesTree, simpleMarginal) | 
					
						
							| 
									
										
										
										
											2012-10-09 06:40:40 +08:00
										 |  |  | { | 
					
						
							|  |  |  |   GaussianFactorGraph gfg; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Matrix A12 = Rot2::fromDegrees(45.0).matrix(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   gfg.add(0, eye(2), zero(2), noiseModel::Isotropic::Sigma(2, 1.0)); | 
					
						
							|  |  |  |   gfg.add(0, -eye(2), 1, eye(2), ones(2), noiseModel::Isotropic::Sigma(2, 1.0)); | 
					
						
							|  |  |  |   gfg.add(1, -eye(2), 2, A12, ones(2), noiseModel::Isotropic::Sigma(2, 1.0)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Matrix expected(GaussianSequentialSolver(gfg).marginalCovariance(2)); | 
					
						
							|  |  |  |   Matrix actual(GaussianMultifrontalSolver(gfg).marginalCovariance(2)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   EXPECT(assert_equal(expected, actual)); | 
					
						
							| 
									
										
										
										
											2012-10-09 07:03:02 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-28 14:21:21 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | TEST(GaussianBayesTree, shortcut_overlapping_separator) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   // Test computing shortcuts when the separator overlaps.  This previously
 | 
					
						
							|  |  |  |   // would have highlighted a problem where information was duplicated.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create factor graph:
 | 
					
						
							|  |  |  |   // f(1,2,5)
 | 
					
						
							|  |  |  |   // f(3,4,5)
 | 
					
						
							|  |  |  |   // f(5,6)
 | 
					
						
							|  |  |  |   // f(6,7)
 | 
					
						
							|  |  |  |   GaussianFactorGraph fg; | 
					
						
							|  |  |  |   noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1); | 
					
						
							|  |  |  |   fg.add(1, Matrix_(1,1, 1.0), 3, Matrix_(1,1, 2.0), 5, Matrix_(1,1, 3.0), Vector_(1, 4.0), model); | 
					
						
							|  |  |  |   fg.add(1, Matrix_(1,1, 5.0), Vector_(1, 6.0), model); | 
					
						
							|  |  |  |   fg.add(2, Matrix_(1,1, 7.0), 4, Matrix_(1,1, 8.0), 5, Matrix_(1,1, 9.0), Vector_(1, 10.0), model); | 
					
						
							|  |  |  |   fg.add(2, Matrix_(1,1, 11.0), Vector_(1, 12.0), model); | 
					
						
							|  |  |  |   fg.add(5, Matrix_(1,1, 13.0), 6, Matrix_(1,1, 14.0), Vector_(1, 15.0), model); | 
					
						
							|  |  |  |   fg.add(6, Matrix_(1,1, 17.0), 7, Matrix_(1,1, 18.0), Vector_(1, 19.0), model); | 
					
						
							|  |  |  |   fg.add(7, Matrix_(1,1, 20.0), Vector_(1, 21.0), model); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Eliminate into BayesTree
 | 
					
						
							|  |  |  |   // c(6,7)
 | 
					
						
							|  |  |  |   // c(5|6)
 | 
					
						
							|  |  |  |   //   c(1,2|5)
 | 
					
						
							|  |  |  |   //   c(3,4|5)
 | 
					
						
							|  |  |  |   GaussianBayesTree bt = *GaussianMultifrontalSolver(fg).eliminate(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   GaussianFactorGraph joint = *bt.joint(1,2, EliminateQR); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Matrix expectedJointJ = (Matrix(2,3) << | 
					
						
							|  |  |  |     0, 11, 12, | 
					
						
							|  |  |  |     -5, 0, -6 | 
					
						
							|  |  |  |     ).finished(); | 
					
						
							|  |  |  |   Matrix actualJointJ = joint.augmentedJacobian(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   EXPECT(assert_equal(expectedJointJ, actualJointJ)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-09 07:03:02 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | int main() { TestResult tr; return TestRegistry::runAllTests(tr);} | 
					
						
							|  |  |  | /* ************************************************************************* */ |