| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
					
						
							|  |  |  | % GTSAM Copyright 2010, Georgia Tech Research Corporation,  | 
					
						
							|  |  |  | % Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  | % All Rights Reserved | 
					
						
							|  |  |  | % Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | %  | 
					
						
							|  |  |  | % See LICENSE for the license information | 
					
						
							|  |  |  | % | 
					
						
							|  |  |  | % @brief An SFM example (adapted from SFMExample.m) optimizing calibration | 
					
						
							|  |  |  | % @author Yong-Dian Jian | 
					
						
							|  |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-08-06 03:31:27 +08:00
										 |  |  | import gtsam.* | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | %% Assumptions | 
					
						
							|  |  |  | %  - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc... | 
					
						
							|  |  |  | %  - Cameras are on a circle around the cube, pointing at the world origin | 
					
						
							|  |  |  | %  - Each camera sees all landmarks.  | 
					
						
							|  |  |  | %  - Visual measurements as 2D points are given, corrupted by Gaussian noise. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % Data Options | 
					
						
							|  |  |  | options.triangle = false; | 
					
						
							|  |  |  | options.nrCameras = 10; | 
					
						
							|  |  |  | options.showImages = false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Generate data | 
					
						
							| 
									
										
										
										
											2012-08-06 03:31:27 +08:00
										 |  |  | [data,truth] = VisualISAMGenerateData(options); | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | measurementNoiseSigma = 1.0; | 
					
						
							|  |  |  | pointNoiseSigma = 0.1; | 
					
						
							|  |  |  | cameraNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1 ... | 
					
						
							|  |  |  |                      0.001*ones(1,5)]'; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph) | 
					
						
							| 
									
										
										
										
											2012-07-24 05:27:44 +08:00
										 |  |  | graph = NonlinearFactorGraph; | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   | 
					
						
							|  |  |  | %% Add factors for all measurements | 
					
						
							| 
									
										
										
										
											2012-07-18 23:47:06 +08:00
										 |  |  | measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma); | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | for i=1:length(data.Z) | 
					
						
							|  |  |  |     for k=1:length(data.Z{i}) | 
					
						
							|  |  |  |         j = data.J{i}{k}; | 
					
						
							| 
									
										
										
										
											2012-07-24 05:27:44 +08:00
										 |  |  |         graph.add(GeneralSFMFactorCal3_S2(data.Z{i}{k}, measurementNoise, symbol('c',i), symbol('p',j))); | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  |     end | 
					
						
							|  |  |  | end | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Add Gaussian priors for a pose and a landmark to constrain the system | 
					
						
							| 
									
										
										
										
											2012-07-18 23:47:06 +08:00
										 |  |  | cameraPriorNoise  = noiseModel.Diagonal.Sigmas(cameraNoiseSigmas); | 
					
						
							| 
									
										
										
										
											2020-02-22 08:42:55 +08:00
										 |  |  | firstCamera = PinholeCameraCal3_S2(truth.cameras{1}.pose, truth.K); | 
					
						
							| 
									
										
										
										
											2020-08-18 02:37:12 +08:00
										 |  |  | graph.add(PriorFactorPinholeCameraCal3_S2(symbol('c',1), firstCamera, cameraPriorNoise)); | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-18 23:47:06 +08:00
										 |  |  | pointPriorNoise  = noiseModel.Isotropic.Sigma(3,pointNoiseSigma); | 
					
						
							| 
									
										
										
										
											2012-07-24 05:27:44 +08:00
										 |  |  | graph.add(PriorFactorPoint3(symbol('p',1), truth.points{1}, pointPriorNoise)); | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | %% Print the graph | 
					
						
							|  |  |  | graph.print(sprintf('\nFactor graph:\n')); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Initialize cameras and points close to ground truth in this example | 
					
						
							| 
									
										
										
										
											2012-07-24 05:27:44 +08:00
										 |  |  | initialEstimate = Values; | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | for i=1:size(truth.cameras,2) | 
					
						
							|  |  |  |     pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1)); | 
					
						
							| 
									
										
										
										
											2020-02-22 08:42:55 +08:00
										 |  |  |     camera_i = PinholeCameraCal3_S2(pose_i, truth.K); | 
					
						
							| 
									
										
										
										
											2012-07-24 05:27:44 +08:00
										 |  |  |     initialEstimate.insert(symbol('c',i), camera_i); | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | end | 
					
						
							|  |  |  | for j=1:size(truth.points,2) | 
					
						
							| 
									
										
										
										
											2020-08-18 02:37:12 +08:00
										 |  |  |     point_j = Point3(truth.points{j} + 0.1*randn(3,1)); | 
					
						
							| 
									
										
										
										
											2012-07-24 05:27:44 +08:00
										 |  |  |     initialEstimate.insert(symbol('p',j), point_j); | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | end | 
					
						
							|  |  |  | initialEstimate.print(sprintf('\nInitial estimate:\n  ')); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Fine grain optimization, allowing user to iterate step by step | 
					
						
							| 
									
										
										
										
											2012-07-18 23:47:06 +08:00
										 |  |  | parameters = LevenbergMarquardtParams; | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | parameters.setlambdaInitial(1.0); | 
					
						
							|  |  |  | parameters.setVerbosityLM('trylambda'); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-24 05:27:44 +08:00
										 |  |  | optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate, parameters); | 
					
						
							| 
									
										
										
										
											2012-07-07 01:38:32 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | for i=1:5 | 
					
						
							|  |  |  |     optimizer.iterate(); | 
					
						
							|  |  |  | end | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | result = optimizer.values(); | 
					
						
							|  |  |  | result.print(sprintf('\nFinal result:\n  ')); |