108 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			108 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
|  | /*
 | ||
|  |     tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array | ||
|  |     arguments | ||
|  | 
 | ||
|  |     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> | ||
|  | 
 | ||
|  |     All rights reserved. Use of this source code is governed by a | ||
|  |     BSD-style license that can be found in the LICENSE file. | ||
|  | */ | ||
|  | 
 | ||
|  | #include <pybind11/numpy.h>
 | ||
|  | 
 | ||
|  | #include "pybind11_tests.h"
 | ||
|  | 
 | ||
|  | #include <utility>
 | ||
|  | 
 | ||
|  | double my_func(int x, float y, double z) { | ||
|  |     py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); | ||
|  |     return (float) x * y * z; | ||
|  | } | ||
|  | 
 | ||
|  | TEST_SUBMODULE(numpy_vectorize, m) { | ||
|  |     try { | ||
|  |         py::module_::import("numpy"); | ||
|  |     } catch (const py::error_already_set &) { | ||
|  |         return; | ||
|  |     } | ||
|  | 
 | ||
|  |     // test_vectorize, test_docs, test_array_collapse
 | ||
|  |     // Vectorize all arguments of a function (though non-vector arguments are also allowed)
 | ||
|  |     m.def("vectorized_func", py::vectorize(my_func)); | ||
|  | 
 | ||
|  |     // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the
 | ||
|  |     // vectorization)
 | ||
|  |     m.def("vectorized_func2", [](py::array_t<int> x, py::array_t<float> y, float z) { | ||
|  |         return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(std::move(x), | ||
|  |                                                                                std::move(y)); | ||
|  |     }); | ||
|  | 
 | ||
|  |     // Vectorize a complex-valued function
 | ||
|  |     m.def("vectorized_func3", | ||
|  |           py::vectorize([](std::complex<double> c) { return c * std::complex<double>(2.f); })); | ||
|  | 
 | ||
|  |     // test_type_selection
 | ||
|  |     // NumPy function which only accepts specific data types
 | ||
|  |     // A lot of these no lints could be replaced with const refs, and probably should at some
 | ||
|  |     // point.
 | ||
|  |     m.def("selective_func", | ||
|  |           [](const py::array_t<int, py::array::c_style> &) { return "Int branch taken."; }); | ||
|  |     m.def("selective_func", | ||
|  |           [](const py::array_t<float, py::array::c_style> &) { return "Float branch taken."; }); | ||
|  |     m.def("selective_func", [](const py::array_t<std::complex<float>, py::array::c_style> &) { | ||
|  |         return "Complex float branch taken."; | ||
|  |     }); | ||
|  | 
 | ||
|  |     // test_passthrough_arguments
 | ||
|  |     // Passthrough test: references and non-pod types should be automatically passed through (in
 | ||
|  |     // the function definition below, only `b`, `d`, and `g` are vectorized):
 | ||
|  |     struct NonPODClass { | ||
|  |         explicit NonPODClass(int v) : value{v} {} | ||
|  |         int value; | ||
|  |     }; | ||
|  |     py::class_<NonPODClass>(m, "NonPODClass") | ||
|  |         .def(py::init<int>()) | ||
|  |         .def_readwrite("value", &NonPODClass::value); | ||
|  |     m.def("vec_passthrough", | ||
|  |           py::vectorize([](const double *a, | ||
|  |                            double b, | ||
|  |                            // Changing this broke things
 | ||
|  |                            // NOLINTNEXTLINE(performance-unnecessary-value-param)
 | ||
|  |                            py::array_t<double> c, | ||
|  |                            const int &d, | ||
|  |                            int &e, | ||
|  |                            NonPODClass f, | ||
|  |                            const double g) { return *a + b + c.at(0) + d + e + f.value + g; })); | ||
|  | 
 | ||
|  |     // test_method_vectorization
 | ||
|  |     struct VectorizeTestClass { | ||
|  |         explicit VectorizeTestClass(int v) : value{v} {}; | ||
|  |         float method(int x, float y) const { return y + (float) (x + value); } | ||
|  |         int value = 0; | ||
|  |     }; | ||
|  |     py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); | ||
|  |     vtc.def(py::init<int>()).def_readwrite("value", &VectorizeTestClass::value); | ||
|  | 
 | ||
|  |     // Automatic vectorizing of methods
 | ||
|  |     vtc.def("method", py::vectorize(&VectorizeTestClass::method)); | ||
|  | 
 | ||
|  |     // test_trivial_broadcasting
 | ||
|  |     // Internal optimization test for whether the input is trivially broadcastable:
 | ||
|  |     py::enum_<py::detail::broadcast_trivial>(m, "trivial") | ||
|  |         .value("f_trivial", py::detail::broadcast_trivial::f_trivial) | ||
|  |         .value("c_trivial", py::detail::broadcast_trivial::c_trivial) | ||
|  |         .value("non_trivial", py::detail::broadcast_trivial::non_trivial); | ||
|  |     m.def("vectorized_is_trivial", | ||
|  |           [](const py::array_t<int, py::array::forcecast> &arg1, | ||
|  |              const py::array_t<float, py::array::forcecast> &arg2, | ||
|  |              const py::array_t<double, py::array::forcecast> &arg3) { | ||
|  |               py::ssize_t ndim = 0; | ||
|  |               std::vector<py::ssize_t> shape; | ||
|  |               std::array<py::buffer_info, 3> buffers{ | ||
|  |                   {arg1.request(), arg2.request(), arg3.request()}}; | ||
|  |               return py::detail::broadcast(buffers, ndim, shape); | ||
|  |           }); | ||
|  | 
 | ||
|  |     m.def("add_to", py::vectorize([](NonPODClass &x, int a) { x.value += a; })); | ||
|  | } |