| 
									
										
										
										
											2012-06-10 02:54:47 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation,  | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  *  @file   testSubgraphConditioner.cpp | 
					
						
							|  |  |  |  *  @brief  Unit tests for SubgraphPreconditioner | 
					
						
							|  |  |  |  *  @author Frank Dellaert | 
					
						
							|  |  |  |  **/ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-06-10 04:15:44 +08:00
										 |  |  | #include <tests/smallExample.h>
 | 
					
						
							| 
									
										
										
										
											2012-06-10 02:54:47 +08:00
										 |  |  | #include <gtsam/nonlinear/Ordering.h>
 | 
					
						
							| 
									
										
										
										
											2012-06-12 22:19:01 +08:00
										 |  |  | #include <gtsam/linear/iterative.h>
 | 
					
						
							| 
									
										
										
										
											2012-06-10 02:54:47 +08:00
										 |  |  | #include <gtsam/linear/JacobianFactorGraph.h>
 | 
					
						
							|  |  |  | #include <gtsam/linear/GaussianSequentialSolver.h>
 | 
					
						
							|  |  |  | #include <gtsam/linear/SubgraphPreconditioner.h>
 | 
					
						
							|  |  |  | #include <gtsam/base/numericalDerivative.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <CppUnitLite/TestHarness.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <boost/foreach.hpp>
 | 
					
						
							|  |  |  | #include <boost/tuple/tuple.hpp>
 | 
					
						
							|  |  |  | #include <boost/assign/std/list.hpp>
 | 
					
						
							|  |  |  | using namespace boost::assign; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | using namespace example; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // define keys
 | 
					
						
							|  |  |  | Key i3003 = 3003, i2003 = 2003, i1003 = 1003; | 
					
						
							|  |  |  | Key i3002 = 3002, i2002 = 2002, i1002 = 1002; | 
					
						
							|  |  |  | Key i3001 = 3001, i2001 = 2001, i1001 = 1001; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // TODO fix Ordering::equals, because the ordering *is* correct !
 | 
					
						
							|  |  |  | /* ************************************************************************* *
 | 
					
						
							|  |  |  | TEST( SubgraphPreconditioner, planarOrdering ) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   // Check canonical ordering
 | 
					
						
							|  |  |  |   Ordering expected, ordering = planarOrdering(3); | 
					
						
							|  |  |  |   expected += i3003, i2003, i1003, i3002, i2002, i1002, i3001, i2001, i1001; | 
					
						
							|  |  |  |   CHECK(assert_equal(expected,ordering)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | TEST( SubgraphPreconditioner, planarGraph ) | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |   // Check planar graph construction
 | 
					
						
							|  |  |  |   GaussianFactorGraph A; | 
					
						
							|  |  |  |   VectorValues xtrue; | 
					
						
							|  |  |  |   boost::tie(A, xtrue) = planarGraph(3); | 
					
						
							|  |  |  |   LONGS_EQUAL(13,A.size()); | 
					
						
							|  |  |  |   LONGS_EQUAL(9,xtrue.size()); | 
					
						
							|  |  |  |   DOUBLES_EQUAL(0,A.error(xtrue),1e-9); // check zero error for xtrue
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check that xtrue is optimal
 | 
					
						
							|  |  |  |   GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(A).eliminate(); | 
					
						
							|  |  |  |   VectorValues actual = optimize(*R1); | 
					
						
							|  |  |  |   CHECK(assert_equal(xtrue,actual)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* *
 | 
					
						
							|  |  |  | TEST( SubgraphPreconditioner, splitOffPlanarTree ) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   // Build a planar graph
 | 
					
						
							|  |  |  |   GaussianFactorGraph A; | 
					
						
							|  |  |  |   VectorValues xtrue; | 
					
						
							|  |  |  |   boost::tie(A, xtrue) = planarGraph(3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Get the spanning tree and constraints, and check their sizes
 | 
					
						
							|  |  |  |   JacobianFactorGraph T, C; | 
					
						
							|  |  |  |   // TODO big mess: GFG and JFG mess !!!
 | 
					
						
							|  |  |  |   boost::tie(T, C) = splitOffPlanarTree(3, A); | 
					
						
							|  |  |  |   LONGS_EQUAL(9,T.size()); | 
					
						
							|  |  |  |   LONGS_EQUAL(4,C.size()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check that the tree can be solved to give the ground xtrue
 | 
					
						
							|  |  |  |   GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(T).eliminate(); | 
					
						
							|  |  |  |   VectorValues xbar = optimize(*R1); | 
					
						
							|  |  |  |   CHECK(assert_equal(xtrue,xbar)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* *
 | 
					
						
							|  |  |  | TEST( SubgraphPreconditioner, system ) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   // Build a planar graph
 | 
					
						
							|  |  |  |   JacobianFactorGraph Ab; | 
					
						
							|  |  |  |   VectorValues xtrue; | 
					
						
							|  |  |  |   size_t N = 3; | 
					
						
							|  |  |  |   boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Get the spanning tree and corresponding ordering
 | 
					
						
							|  |  |  |   GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
 | 
					
						
							|  |  |  |   boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab); | 
					
						
							|  |  |  |   SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_)); | 
					
						
							|  |  |  |   SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Eliminate the spanning tree to build a prior
 | 
					
						
							|  |  |  |   SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
 | 
					
						
							|  |  |  |   VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create Subgraph-preconditioned system
 | 
					
						
							|  |  |  |   VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
 | 
					
						
							|  |  |  |   SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create zero config
 | 
					
						
							|  |  |  |   VectorValues zeros = VectorValues::Zero(xbar); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Set up y0 as all zeros
 | 
					
						
							|  |  |  |   VectorValues y0 = zeros; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // y1 = perturbed y0
 | 
					
						
							|  |  |  |   VectorValues y1 = zeros; | 
					
						
							|  |  |  |   y1[i2003] = Vector_(2, 1.0, -1.0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check corresponding x  values
 | 
					
						
							|  |  |  |   VectorValues expected_x1 = xtrue, x1 = system.x(y1); | 
					
						
							|  |  |  |   expected_x1[i2003] = Vector_(2, 2.01, 2.99); | 
					
						
							|  |  |  |   expected_x1[i3003] = Vector_(2, 3.01, 2.99); | 
					
						
							|  |  |  |   CHECK(assert_equal(xtrue, system.x(y0))); | 
					
						
							|  |  |  |   CHECK(assert_equal(expected_x1,system.x(y1))); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check errors
 | 
					
						
							|  |  |  | //  DOUBLES_EQUAL(0,error(Ab,xtrue),1e-9); // TODO !
 | 
					
						
							|  |  |  | //  DOUBLES_EQUAL(3,error(Ab,x1),1e-9); // TODO !
 | 
					
						
							|  |  |  |   DOUBLES_EQUAL(0,error(system,y0),1e-9); | 
					
						
							|  |  |  |   DOUBLES_EQUAL(3,error(system,y1),1e-9); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Test gradient in x
 | 
					
						
							|  |  |  |   VectorValues expected_gx0 = zeros; | 
					
						
							|  |  |  |   VectorValues expected_gx1 = zeros; | 
					
						
							|  |  |  |   CHECK(assert_equal(expected_gx0,gradient(Ab,xtrue))); | 
					
						
							|  |  |  |   expected_gx1[i1003] = Vector_(2, -100., 100.); | 
					
						
							|  |  |  |   expected_gx1[i2002] = Vector_(2, -100., 100.); | 
					
						
							|  |  |  |   expected_gx1[i2003] = Vector_(2, 200., -200.); | 
					
						
							|  |  |  |   expected_gx1[i3002] = Vector_(2, -100., 100.); | 
					
						
							|  |  |  |   expected_gx1[i3003] = Vector_(2, 100., -100.); | 
					
						
							|  |  |  |   CHECK(assert_equal(expected_gx1,gradient(Ab,x1))); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Test gradient in y
 | 
					
						
							|  |  |  |   VectorValues expected_gy0 = zeros; | 
					
						
							|  |  |  |   VectorValues expected_gy1 = zeros; | 
					
						
							|  |  |  |   expected_gy1[i1003] = Vector_(2, 2., -2.); | 
					
						
							|  |  |  |   expected_gy1[i2002] = Vector_(2, -2., 2.); | 
					
						
							|  |  |  |   expected_gy1[i2003] = Vector_(2, 3., -3.); | 
					
						
							|  |  |  |   expected_gy1[i3002] = Vector_(2, -1., 1.); | 
					
						
							|  |  |  |   expected_gy1[i3003] = Vector_(2, 1., -1.); | 
					
						
							|  |  |  |   CHECK(assert_equal(expected_gy0,gradient(system,y0))); | 
					
						
							|  |  |  |   CHECK(assert_equal(expected_gy1,gradient(system,y1))); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Check it numerically for good measure
 | 
					
						
							|  |  |  |   // TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
 | 
					
						
							|  |  |  |   //	Vector numerical_g1 = numericalGradient<VectorValues> (error, y1, 0.001);
 | 
					
						
							|  |  |  |   //	Vector expected_g1 = Vector_(18, 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
 | 
					
						
							|  |  |  |   //			3., -3., 0., 0., -1., 1., 1., -1.);
 | 
					
						
							|  |  |  |   //	CHECK(assert_equal(expected_g1,numerical_g1));
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* *
 | 
					
						
							|  |  |  | TEST( SubgraphPreconditioner, conjugateGradients ) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   // Build a planar graph
 | 
					
						
							|  |  |  |   GaussianFactorGraph Ab; | 
					
						
							|  |  |  |   VectorValues xtrue; | 
					
						
							|  |  |  |   size_t N = 3; | 
					
						
							|  |  |  |   boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Get the spanning tree and corresponding ordering
 | 
					
						
							|  |  |  |   GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
 | 
					
						
							|  |  |  |   boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab); | 
					
						
							|  |  |  |   SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_)); | 
					
						
							|  |  |  |   SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Eliminate the spanning tree to build a prior
 | 
					
						
							|  |  |  |   Ordering ordering = planarOrdering(N); | 
					
						
							|  |  |  |   SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
 | 
					
						
							|  |  |  |   VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create Subgraph-preconditioned system
 | 
					
						
							|  |  |  |   VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
 | 
					
						
							|  |  |  |   SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbarShared); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create zero config y0 and perturbed config y1
 | 
					
						
							|  |  |  |   VectorValues y0 = VectorValues::Zero(xbar); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   VectorValues y1 = y0; | 
					
						
							|  |  |  |   y1[i2003] = Vector_(2, 1.0, -1.0); | 
					
						
							|  |  |  |   VectorValues x1 = system.x(y1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Solve for the remaining constraints using PCG
 | 
					
						
							|  |  |  |   ConjugateGradientParameters parameters; | 
					
						
							|  |  |  | //  VectorValues actual = gtsam::conjugateGradients<SubgraphPreconditioner,
 | 
					
						
							|  |  |  | //      VectorValues, Errors>(system, y1, verbose, epsilon, epsilon, maxIterations);
 | 
					
						
							|  |  |  | //  CHECK(assert_equal(y0,actual));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Compare with non preconditioned version:
 | 
					
						
							|  |  |  |   VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters); | 
					
						
							|  |  |  |   CHECK(assert_equal(xtrue,actual2,1e-4)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | int main() { | 
					
						
							|  |  |  |   TestResult tr; | 
					
						
							|  |  |  |   return TestRegistry::runAllTests(tr); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | /* ************************************************************************* */ |