gtsam/gtsam_unstable/base/tests/testBAD.cpp

485 lines
13 KiB
C++
Raw Normal View History

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testBAD.cpp
* @date September 18, 2014
* @author Frank Dellaert
* @brief unit tests for Block Automatic Differentiation
*/
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/slam/GeneralSFMFactor.h>
#include <gtsam/inference/Key.h>
2014-09-19 06:33:11 +08:00
#include <gtsam/base/Testable.h>
#include <boost/make_shared.hpp>
2014-09-22 00:54:01 +08:00
#include <boost/foreach.hpp>
#include <boost/bind.hpp>
#include <CppUnitLite/TestHarness.h>
2014-09-21 22:30:30 +08:00
namespace gtsam {
2014-09-27 17:39:46 +08:00
///-----------------------------------------------------------------------------
/// Expression node. The superclass for objects that do the heavy lifting
/// An Expression<T> has a pointer to an ExpressionNode<T> underneath
/// allowing Expressions to have polymorphic behaviour even though they
/// are passed by value. This is the same way boost::function works.
/// http://loki-lib.sourceforge.net/html/a00652.html
template<class T>
class ExpressionNode {
2014-09-27 21:58:34 +08:00
protected:
2014-09-27 21:48:07 +08:00
ExpressionNode() {
}
2014-09-27 21:58:34 +08:00
public:
2014-09-27 21:48:07 +08:00
virtual ~ExpressionNode() {
}
2014-09-27 22:08:59 +08:00
/// Return keys that play in this expression as a set
virtual std::set<Key> keys() const = 0;
/// Return value and optional derivatives
2014-09-27 17:39:46 +08:00
virtual T value(const Values& values,
2014-09-27 21:48:07 +08:00
boost::optional<std::map<Key, Matrix>&> = boost::none) const = 0;
2014-09-27 17:39:46 +08:00
};
2014-09-27 21:01:02 +08:00
template<typename T>
class Expression;
2014-09-21 22:30:30 +08:00
/// Constant Expression
template<class T>
2014-09-27 21:48:07 +08:00
class ConstantExpression: public ExpressionNode<T> {
2014-09-21 22:30:30 +08:00
T value_;
/// Constructor with a value, yielding a constant
ConstantExpression(const T& value) :
2014-09-27 21:48:07 +08:00
value_(value) {
}
2014-09-27 21:58:34 +08:00
friend class Expression<T> ;
public:
2014-09-27 21:48:07 +08:00
virtual ~ConstantExpression() {
2014-09-21 22:30:30 +08:00
}
2014-09-27 22:08:59 +08:00
/// Return keys that play in this expression, i.e., the empty set
virtual std::set<Key> keys() const {
std::set<Key> keys;
return keys;
2014-09-27 21:48:07 +08:00
}
2014-09-27 22:08:59 +08:00
/// Return value and optional derivatives
2014-09-27 17:39:46 +08:00
virtual T value(const Values& values,
2014-09-27 21:48:07 +08:00
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
2014-09-21 22:30:30 +08:00
return value_;
}
};
2014-09-21 23:37:09 +08:00
//-----------------------------------------------------------------------------
2014-09-21 22:30:30 +08:00
/// Leaf Expression
template<class T>
2014-09-27 21:48:07 +08:00
class LeafExpression: public ExpressionNode<T> {
2014-09-21 22:30:30 +08:00
Key key_;
/// Constructor with a single key
2014-09-21 23:37:09 +08:00
LeafExpression(Key key) :
2014-09-27 21:48:07 +08:00
key_(key) {
}
2014-09-27 21:58:34 +08:00
friend class Expression<T> ;
public:
2014-09-27 21:48:07 +08:00
virtual ~LeafExpression() {
}
2014-09-27 22:08:59 +08:00
/// Return keys that play in this expression
virtual std::set<Key> keys() const {
std::set<Key> keys;
2014-09-27 21:48:07 +08:00
keys.insert(key_);
2014-09-27 22:08:59 +08:00
return keys;
2014-09-27 21:48:07 +08:00
}
2014-09-27 22:08:59 +08:00
/// Return value and optional derivatives
2014-09-27 17:39:46 +08:00
virtual T value(const Values& values,
2014-09-27 21:48:07 +08:00
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
2014-09-22 00:22:28 +08:00
const T& value = values.at<T>(key_);
2014-09-27 21:48:07 +08:00
if (jacobians) {
2014-09-27 17:39:46 +08:00
std::map<Key, Matrix>::iterator it = jacobians->find(key_);
2014-09-27 21:48:07 +08:00
if (it != jacobians->end()) {
2014-09-27 17:39:46 +08:00
it->second += Eigen::MatrixXd::Identity(value.dim(), value.dim());
} else {
2014-09-27 21:48:07 +08:00
(*jacobians)[key_] = Eigen::MatrixXd::Identity(value.dim(),
value.dim());
2014-09-27 17:39:46 +08:00
}
}
return value;
2014-09-22 00:22:28 +08:00
}
2014-09-27 17:39:46 +08:00
};
2014-09-21 23:43:47 +08:00
//-----------------------------------------------------------------------------
/// Unary Expression
template<class T, class E>
2014-09-27 21:48:07 +08:00
class UnaryExpression: public ExpressionNode<T> {
2014-09-21 23:43:47 +08:00
2014-09-27 21:48:07 +08:00
public:
2014-09-21 23:43:47 +08:00
2014-09-27 17:39:46 +08:00
typedef T (*function)(const E&, boost::optional<Matrix&>);
2014-09-21 23:43:47 +08:00
2014-09-27 21:48:07 +08:00
private:
2014-09-21 23:43:47 +08:00
2014-09-27 21:48:07 +08:00
boost::shared_ptr<ExpressionNode<E> > expression_;
2014-09-21 23:43:47 +08:00
function f_;
2014-09-27 21:58:34 +08:00
/// Constructor with a unary function f, and input argument e
UnaryExpression(function f, const Expression<E>& e) :
expression_(e.root()), f_(f) {
}
friend class Expression<T> ;
2014-09-27 21:48:07 +08:00
public:
2014-09-21 23:43:47 +08:00
2014-09-27 21:48:07 +08:00
virtual ~UnaryExpression() {
2014-09-21 23:43:47 +08:00
}
2014-09-27 17:39:46 +08:00
2014-09-27 22:08:59 +08:00
/// Return keys that play in this expression
virtual std::set<Key> keys() const {
return expression_->keys();
2014-09-27 21:48:07 +08:00
}
2014-09-27 22:08:59 +08:00
/// Return value and optional derivatives
2014-09-27 17:39:46 +08:00
virtual T value(const Values& values,
2014-09-27 21:48:07 +08:00
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
2014-09-27 17:39:46 +08:00
T value;
2014-09-27 21:48:07 +08:00
if (jacobians) {
2014-09-27 17:39:46 +08:00
Eigen::MatrixXd H;
value = f_(expression_->value(values, jacobians), H);
std::map<Key, Matrix>::iterator it = jacobians->begin();
2014-09-27 21:48:07 +08:00
for (; it != jacobians->end(); ++it) {
2014-09-27 17:39:46 +08:00
it->second = H * it->second;
}
} else {
value = f_(expression_->value(values), boost::none);
}
return value;
2014-09-21 23:43:47 +08:00
}
2014-09-22 00:22:28 +08:00
2014-09-21 23:43:47 +08:00
};
2014-09-21 23:37:09 +08:00
//-----------------------------------------------------------------------------
/// Binary Expression
2014-09-27 17:39:46 +08:00
2014-09-21 23:37:09 +08:00
template<class T, class E1, class E2>
2014-09-27 21:48:07 +08:00
class BinaryExpression: public ExpressionNode<T> {
2014-09-21 23:37:09 +08:00
2014-09-27 21:48:07 +08:00
public:
2014-09-21 23:37:09 +08:00
2014-09-27 21:48:07 +08:00
typedef T (*function)(const E1&, const E2&, boost::optional<Matrix&>,
boost::optional<Matrix&>);
2014-09-21 23:37:09 +08:00
2014-09-27 21:48:07 +08:00
private:
2014-09-21 23:37:09 +08:00
2014-09-27 21:48:07 +08:00
boost::shared_ptr<ExpressionNode<E1> > expression1_;
boost::shared_ptr<ExpressionNode<E2> > expression2_;
2014-09-21 23:37:09 +08:00
function f_;
2014-09-27 21:58:34 +08:00
/// Constructor with a binary function f, and two input arguments
BinaryExpression(function f, //
const Expression<E1>& e1, const Expression<E2>& e2) :
expression1_(e1.root()), expression2_(e2.root()), f_(f) {
}
friend class Expression<T> ;
2014-09-27 21:48:07 +08:00
public:
2014-09-21 23:37:09 +08:00
2014-09-27 21:48:07 +08:00
virtual ~BinaryExpression() {
2014-09-21 23:37:09 +08:00
}
2014-09-27 22:08:59 +08:00
/// Return keys that play in this expression
virtual std::set<Key> keys() const {
std::set<Key> keys1 = expression1_->keys();
std::set<Key> keys2 = expression2_->keys();
keys1.insert(keys2.begin(), keys2.end());
return keys1;
2014-09-21 23:37:09 +08:00
}
2014-09-27 22:08:59 +08:00
/// Return value and optional derivatives
2014-09-27 17:39:46 +08:00
virtual T value(const Values& values,
2014-09-27 21:48:07 +08:00
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
2014-09-27 17:39:46 +08:00
T val;
2014-09-27 21:48:07 +08:00
if (jacobians) {
2014-09-27 17:39:46 +08:00
std::map<Key, Matrix> terms1;
std::map<Key, Matrix> terms2;
Matrix H1, H2;
2014-09-27 21:48:07 +08:00
val = f_(expression1_->value(values, terms1),
expression2_->value(values, terms2), H1, H2);
2014-09-27 17:39:46 +08:00
// TODO: both Jacobians and terms are sorted. There must be a simple
// but fast algorithm that does this.
typedef std::pair<Key, Matrix> Pair;
BOOST_FOREACH(const Pair& term, terms1) {
std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
2014-09-27 21:48:07 +08:00
if (it != jacobians->end()) {
2014-09-27 17:39:46 +08:00
it->second += H1 * term.second;
} else {
(*jacobians)[term.first] = H1 * term.second;
}
}
BOOST_FOREACH(const Pair& term, terms2) {
std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
2014-09-27 21:48:07 +08:00
if (it != jacobians->end()) {
2014-09-27 17:39:46 +08:00
it->second += H2 * term.second;
} else {
(*jacobians)[term.first] = H2 * term.second;
}
}
} else {
val = f_(expression1_->value(values), expression2_->value(values),
2014-09-27 21:48:07 +08:00
boost::none, boost::none);
2014-09-27 17:39:46 +08:00
}
return val;
2014-09-22 00:22:28 +08:00
}
2014-09-27 17:39:46 +08:00
2014-09-21 23:37:09 +08:00
};
/**
* Expression class that supports automatic differentiation
*/
2014-09-27 17:39:46 +08:00
template<typename T>
class Expression {
2014-09-27 21:48:07 +08:00
public:
2014-09-27 17:39:46 +08:00
// Construct a constant expression
2014-09-27 17:39:46 +08:00
Expression(const T& value) :
2014-09-27 21:48:07 +08:00
root_(new ConstantExpression<T>(value)) {
}
2014-09-27 17:39:46 +08:00
// Construct a leaf expression
2014-09-27 17:39:46 +08:00
Expression(const Key& key) :
2014-09-27 21:48:07 +08:00
root_(new LeafExpression<T>(key)) {
}
2014-09-27 17:39:46 +08:00
/// Construct a unary expression
2014-09-27 17:39:46 +08:00
template<typename E>
2014-09-27 21:48:07 +08:00
Expression(typename UnaryExpression<T, E>::function f,
const Expression<E>& expression) {
2014-09-27 17:39:46 +08:00
// TODO Assert that root of expression is not null.
2014-09-27 21:48:07 +08:00
root_.reset(new UnaryExpression<T, E>(f, expression));
2014-09-27 17:39:46 +08:00
}
/// Construct a binary expression
2014-09-27 17:39:46 +08:00
template<typename E1, typename E2>
2014-09-27 21:48:07 +08:00
Expression(typename BinaryExpression<T, E1, E2>::function f,
const Expression<E1>& expression1, const Expression<E2>& expression2) {
2014-09-27 17:39:46 +08:00
// TODO Assert that root of expressions 1 and 2 are not null.
2014-09-27 21:48:07 +08:00
root_.reset(new BinaryExpression<T, E1, E2>(f, expression1, expression2));
2014-09-27 17:39:46 +08:00
}
/// Return keys that play in this expression
2014-09-27 22:08:59 +08:00
std::set<Key> keys() const {
return root_->keys();
2014-09-27 21:48:07 +08:00
}
/// Return value and optional derivatives
2014-09-27 17:39:46 +08:00
T value(const Values& values,
2014-09-27 21:48:07 +08:00
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
2014-09-27 17:39:46 +08:00
return root_->value(values, jacobians);
}
2014-09-27 21:48:07 +08:00
const boost::shared_ptr<ExpressionNode<T> >& root() const {
return root_;
}
private:
2014-09-27 17:39:46 +08:00
boost::shared_ptr<ExpressionNode<T> > root_;
};
// http://stackoverflow.com/questions/16260445/boost-bind-to-operator
template<class E1, class E2>
struct apply_product {
typedef E2 result_type;
E2 operator()(E1 const& x, E2 const& y) const {
return x * y;
}
};
/// Construct a product expression, assumes E1 * E2 -> E1
template<typename E1, typename E2>
Expression<E2> operator*(const Expression<E1>& expression1, const Expression<E2>& expression2) {
using namespace boost;
return Expression<E2>(boost::bind(apply_product<E1,E2>(),_1,_2),expression1, expression2);
}
2014-09-22 00:22:28 +08:00
//-----------------------------------------------------------------------------
2014-09-22 00:36:19 +08:00
void printPair(std::pair<Key, Matrix> pair) {
2014-09-22 00:22:28 +08:00
std::cout << pair.first << ": " << pair.second << std::endl;
}
2014-09-22 00:54:01 +08:00
// usage: std::for_each(terms.begin(), terms.end(), printPair);
2014-09-22 00:22:28 +08:00
2014-09-21 23:37:09 +08:00
//-----------------------------------------------------------------------------
/// AD Factor
2014-09-27 17:39:46 +08:00
template<class T>
2014-09-19 06:33:11 +08:00
class BADFactor: NonlinearFactor {
2014-09-21 22:30:30 +08:00
const T measurement_;
2014-09-27 17:39:46 +08:00
const Expression<T> expression_;
2014-09-21 22:30:30 +08:00
2014-09-21 23:13:25 +08:00
/// get value from expression and calculate error with respect to measurement
Vector unwhitenedError(const Values& values) const {
const T& value = expression_.value(values);
2014-09-22 00:54:01 +08:00
return value.localCoordinates(measurement_);
2014-09-21 23:13:25 +08:00
}
2014-09-27 21:48:07 +08:00
public:
/// Constructor
2014-09-27 17:39:46 +08:00
BADFactor(const T& measurement, const Expression<T>& expression) :
2014-09-27 21:48:07 +08:00
measurement_(measurement), expression_(expression) {
2014-09-27 17:39:46 +08:00
}
/// Constructor
BADFactor(const T& measurement, const ExpressionNode<T>& expression) :
2014-09-27 21:48:07 +08:00
measurement_(measurement), expression_(expression) {
}
2014-09-19 06:33:11 +08:00
/**
2014-09-21 23:13:25 +08:00
* Calculate the error of the factor.
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
2014-09-19 06:33:11 +08:00
*/
2014-09-21 23:13:25 +08:00
virtual double error(const Values& values) const {
if (this->active(values)) {
const Vector e = unwhitenedError(values);
return 0.5 * e.squaredNorm();
2014-09-21 23:13:25 +08:00
} else {
return 0.0;
}
2014-09-19 06:33:11 +08:00
}
/// get the dimension of the factor (number of rows on linearization)
size_t dim() const {
return 0;
}
/// linearize to a GaussianFactor
2014-09-21 22:30:30 +08:00
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
// We will construct an n-ary factor below, where terms is a container whose
// value type is std::pair<Key, Matrix>, specifying the
// collection of keys and matrices making up the factor.
2014-09-27 17:39:46 +08:00
std::map<Key, Matrix> terms;
expression_.value(values, terms);
2014-09-21 23:13:25 +08:00
Vector b = unwhitenedError(values);
SharedDiagonal model = SharedDiagonal();
2014-09-21 22:30:30 +08:00
return boost::shared_ptr<JacobianFactor>(
new JacobianFactor(terms, b, model));
}
};
2014-09-21 22:30:30 +08:00
}
using namespace std;
using namespace gtsam;
2014-09-22 00:22:28 +08:00
/* ************************************************************************* */
2014-09-22 00:36:19 +08:00
Point3 transformTo(const Pose3& x, const Point3& p,
2014-09-27 21:48:07 +08:00
boost::optional<Matrix&> Dpose, boost::optional<Matrix&> Dpoint) {
2014-09-22 00:36:19 +08:00
return x.transform_to(p, Dpose, Dpoint);
}
2014-09-22 00:36:19 +08:00
Point2 project(const Point3& p, boost::optional<Matrix&> Dpoint) {
return PinholeCamera<Cal3_S2>::project_to_camera(p, Dpoint);
}
template<class CAL>
2014-09-22 00:36:19 +08:00
Point2 uncalibrate(const CAL& K, const Point2& p, boost::optional<Matrix&> Dcal,
2014-09-27 21:48:07 +08:00
boost::optional<Matrix&> Dp) {
2014-09-22 00:36:19 +08:00
return K.uncalibrate(p, Dcal, Dp);
}
/* ************************************************************************* */
TEST(BAD, test) {
// Create some values
Values values;
2014-09-21 22:30:30 +08:00
values.insert(1, Pose3());
values.insert(2, Point3(0, 0, 1));
values.insert(3, Cal3_S2());
// Create old-style factor to create expected value and derivatives
Point2 measured(-17, 30);
SharedNoiseModel model = noiseModel::Unit::Create(2);
GeneralSFMFactor2<Cal3_S2> old(measured, model, 1, 2, 3);
2014-09-21 23:13:25 +08:00
double expected_error = old.error(values);
GaussianFactor::shared_ptr expected = old.linearize(values);
2014-09-27 21:58:34 +08:00
// Test Constant expression
Expression<int> c(0);
// Create leaves
2014-09-27 17:39:46 +08:00
Expression<Pose3> x(1);
Expression<Point3> p(2);
Expression<Cal3_S2> K(3);
// Create expression tree
2014-09-27 17:39:46 +08:00
Expression<Point3> p_cam(transformTo, x, p);
Expression<Point2> projection(project, p_cam);
Expression<Point2> uv_hat(uncalibrate, K, projection);
2014-09-27 22:08:59 +08:00
// Check keys
std::set<Key> expectedKeys;
expectedKeys.insert(1);
expectedKeys.insert(2);
expectedKeys.insert(3);
EXPECT(expectedKeys == uv_hat.keys());
// Create factor
2014-09-27 17:39:46 +08:00
BADFactor<Point2> f(measured, uv_hat);
// Check value
2014-09-21 23:13:25 +08:00
EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
2014-09-19 06:33:11 +08:00
// Check dimension
EXPECT_LONGS_EQUAL(0, f.dim());
// Check linearization
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
EXPECT( assert_equal(*expected, *gf, 1e-9));
2014-09-27 17:39:46 +08:00
}
/* ************************************************************************* */
TEST(BAD, rotate) {
Expression<Rot3> R(1);
Expression<Point3> p(2);
// fails because optional derivatives can't be delivered by the operator
// Need a convention for products like these. "act" ?
// Expression<Point3> q = R * p;
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */