90 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			90 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
|  | /*
 | ||
|  |     tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array | ||
|  |     arguments | ||
|  | 
 | ||
|  |     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> | ||
|  | 
 | ||
|  |     All rights reserved. Use of this source code is governed by a | ||
|  |     BSD-style license that can be found in the LICENSE file. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "pybind11_tests.h"
 | ||
|  | #include <pybind11/numpy.h>
 | ||
|  | 
 | ||
|  | double my_func(int x, float y, double z) { | ||
|  |     py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); | ||
|  |     return (float) x*y*z; | ||
|  | } | ||
|  | 
 | ||
|  | TEST_SUBMODULE(numpy_vectorize, m) { | ||
|  |     try { py::module::import("numpy"); } | ||
|  |     catch (...) { return; } | ||
|  | 
 | ||
|  |     // test_vectorize, test_docs, test_array_collapse
 | ||
|  |     // Vectorize all arguments of a function (though non-vector arguments are also allowed)
 | ||
|  |     m.def("vectorized_func", py::vectorize(my_func)); | ||
|  | 
 | ||
|  |     // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
 | ||
|  |     m.def("vectorized_func2", | ||
|  |         [](py::array_t<int> x, py::array_t<float> y, float z) { | ||
|  |             return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); | ||
|  |         } | ||
|  |     ); | ||
|  | 
 | ||
|  |     // Vectorize a complex-valued function
 | ||
|  |     m.def("vectorized_func3", py::vectorize( | ||
|  |         [](std::complex<double> c) { return c * std::complex<double>(2.f); } | ||
|  |     )); | ||
|  | 
 | ||
|  |     // test_type_selection
 | ||
|  |     // NumPy function which only accepts specific data types
 | ||
|  |     m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; }); | ||
|  |     m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; }); | ||
|  |     m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; }); | ||
|  | 
 | ||
|  | 
 | ||
|  |     // test_passthrough_arguments
 | ||
|  |     // Passthrough test: references and non-pod types should be automatically passed through (in the
 | ||
|  |     // function definition below, only `b`, `d`, and `g` are vectorized):
 | ||
|  |     struct NonPODClass { | ||
|  |         NonPODClass(int v) : value{v} {} | ||
|  |         int value; | ||
|  |     }; | ||
|  |     py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>()); | ||
|  |     m.def("vec_passthrough", py::vectorize( | ||
|  |         [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) { | ||
|  |             return *a + b + c.at(0) + d + e + f.value + g; | ||
|  |         } | ||
|  |     )); | ||
|  | 
 | ||
|  |     // test_method_vectorization
 | ||
|  |     struct VectorizeTestClass { | ||
|  |         VectorizeTestClass(int v) : value{v} {}; | ||
|  |         float method(int x, float y) { return y + (float) (x + value); } | ||
|  |         int value = 0; | ||
|  |     }; | ||
|  |     py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); | ||
|  |     vtc .def(py::init<int>()) | ||
|  |         .def_readwrite("value", &VectorizeTestClass::value); | ||
|  | 
 | ||
|  |     // Automatic vectorizing of methods
 | ||
|  |     vtc.def("method", py::vectorize(&VectorizeTestClass::method)); | ||
|  | 
 | ||
|  |     // test_trivial_broadcasting
 | ||
|  |     // Internal optimization test for whether the input is trivially broadcastable:
 | ||
|  |     py::enum_<py::detail::broadcast_trivial>(m, "trivial") | ||
|  |         .value("f_trivial", py::detail::broadcast_trivial::f_trivial) | ||
|  |         .value("c_trivial", py::detail::broadcast_trivial::c_trivial) | ||
|  |         .value("non_trivial", py::detail::broadcast_trivial::non_trivial); | ||
|  |     m.def("vectorized_is_trivial", []( | ||
|  |                 py::array_t<int, py::array::forcecast> arg1, | ||
|  |                 py::array_t<float, py::array::forcecast> arg2, | ||
|  |                 py::array_t<double, py::array::forcecast> arg3 | ||
|  |                 ) { | ||
|  |         ssize_t ndim; | ||
|  |         std::vector<ssize_t> shape; | ||
|  |         std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }}; | ||
|  |         return py::detail::broadcast(buffers, ndim, shape); | ||
|  |     }); | ||
|  | } |