171 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
		
		
			
		
	
	
			171 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
|  | #LyX 1.6.7 created this file. For more info see http://www.lyx.org/ | ||
|  | \lyxformat 345 | ||
|  | \begin_document | ||
|  | \begin_header | ||
|  | \textclass article | ||
|  | \use_default_options true | ||
|  | \language english | ||
|  | \inputencoding auto | ||
|  | \font_roman default | ||
|  | \font_sans default | ||
|  | \font_typewriter default | ||
|  | \font_default_family default | ||
|  | \font_sc false | ||
|  | \font_osf false | ||
|  | \font_sf_scale 100 | ||
|  | \font_tt_scale 100 | ||
|  | 
 | ||
|  | \graphics default | ||
|  | \paperfontsize default | ||
|  | \use_hyperref false | ||
|  | \papersize default | ||
|  | \use_geometry false | ||
|  | \use_amsmath 1 | ||
|  | \use_esint 1 | ||
|  | \cite_engine basic | ||
|  | \use_bibtopic false | ||
|  | \paperorientation portrait | ||
|  | \secnumdepth 3 | ||
|  | \tocdepth 3 | ||
|  | \paragraph_separation indent | ||
|  | \defskip medskip | ||
|  | \quotes_language english | ||
|  | \papercolumns 1 | ||
|  | \papersides 1 | ||
|  | \paperpagestyle default | ||
|  | \tracking_changes false | ||
|  | \output_changes false | ||
|  | \author ""  | ||
|  | \author ""  | ||
|  | \end_header | ||
|  | 
 | ||
|  | \begin_body | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Basic solving with Cholesky | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Solving a linear least-squares system: | ||
|  | \begin_inset Formula \[ | ||
|  | \arg\min_{x}\left\Vert Ax-b\right\Vert ^{2}\] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Set derivative equal to zero: | ||
|  | \begin_inset Formula \begin{align*} | ||
|  | 0 & =2A^{T}\left(Ax-b\right)\\ | ||
|  | 0 & =A^{T}Ax-A^{T}b\end{align*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | For comparison, with QR we do | ||
|  | \begin_inset Formula \begin{align*} | ||
|  | 0 & =R^{T}Q^{T}QRx-R^{T}Qb\\ | ||
|  |  & =R^{T}Rx-R^{T}Qb\\ | ||
|  | Rx & =Qb\\ | ||
|  | x & =R^{-1}Qb\end{align*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | But with Cholesky we do | ||
|  | \begin_inset Formula \begin{align*} | ||
|  | 0 & =R^{T}RR^{T}Rx-R^{T}Rb\\ | ||
|  |  & =R^{T}Rx-b\\ | ||
|  |  & =Rx-R^{-T}b\\ | ||
|  | x & =R^{-1}R^{-T}b\end{align*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Frontal (rank-deficient) solving with Cholesky | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | To do multi-frontal elimination, we decompose into rank-deficient conditionals. | ||
|  |   | ||
|  | \begin_inset Formula \[ | ||
|  | \left[\begin{array}{cccccc} | ||
|  | \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\ | ||
|  | \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\\ | ||
|  | \cdot & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right]\to\] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Formula \[ | ||
|  | \left[\begin{array}{cc} | ||
|  | R^{T} & 0\\ | ||
|  | S^{T} & C^{T}\end{array}\right]\left[\begin{array}{cc} | ||
|  | R & S\\ | ||
|  | 0 & C\end{array}\right]=\left[\begin{array}{cc} | ||
|  | F^{T}F & F^{T}G\\ | ||
|  | G^{T}F & G^{T}G\end{array}\right]\] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset space ~ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Formula \[ | ||
|  | R^{T}R=F^{T}F\] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset space ~ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Formula \begin{align*} | ||
|  | R^{T}S & =F^{T}G\\ | ||
|  | S & =R^{-T}F^{T}G\end{align*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset space ~ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Formula \begin{align*} | ||
|  | S^{T}S+C^{T}C & =G^{T}G\\ | ||
|  | G^{T}FR^{-1}R^{-T}F^{T}G+C^{T}C & =G^{T}G\\ | ||
|  | G^{T}QRR^{-1}R^{-T}R^{T}Q^{T}G+C^{T}C & =G^{T}G\\ | ||
|  | \textbf{if }R\textbf{ is invertible, }G^{T}G+C^{T}C & =G^{T}G\\ | ||
|  | C^{T}C & =0\end{align*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_body | ||
|  | \end_document |