588 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
		
		
			
		
	
	
			588 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
|  | import pytest | ||
|  | 
 | ||
|  | import env  # noqa: F401 | ||
|  | from pybind11_tests import numpy_array as m | ||
|  | 
 | ||
|  | np = pytest.importorskip("numpy") | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_dtypes(): | ||
|  |     # See issue #1328. | ||
|  |     # - Platform-dependent sizes. | ||
|  |     for size_check in m.get_platform_dtype_size_checks(): | ||
|  |         print(size_check) | ||
|  |         assert size_check.size_cpp == size_check.size_numpy, size_check | ||
|  |     # - Concrete sizes. | ||
|  |     for check in m.get_concrete_dtype_checks(): | ||
|  |         print(check) | ||
|  |         assert check.numpy == check.pybind11, check | ||
|  |         if check.numpy.num != check.pybind11.num: | ||
|  |             print( | ||
|  |                 f"NOTE: typenum mismatch for {check}: {check.numpy.num} != {check.pybind11.num}" | ||
|  |             ) | ||
|  | 
 | ||
|  | 
 | ||
|  | @pytest.fixture(scope="function") | ||
|  | def arr(): | ||
|  |     return np.array([[1, 2, 3], [4, 5, 6]], "=u2") | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_array_attributes(): | ||
|  |     a = np.array(0, "f8") | ||
|  |     assert m.ndim(a) == 0 | ||
|  |     assert all(m.shape(a) == []) | ||
|  |     assert all(m.strides(a) == []) | ||
|  |     with pytest.raises(IndexError) as excinfo: | ||
|  |         m.shape(a, 0) | ||
|  |     assert str(excinfo.value) == "invalid axis: 0 (ndim = 0)" | ||
|  |     with pytest.raises(IndexError) as excinfo: | ||
|  |         m.strides(a, 0) | ||
|  |     assert str(excinfo.value) == "invalid axis: 0 (ndim = 0)" | ||
|  |     assert m.writeable(a) | ||
|  |     assert m.size(a) == 1 | ||
|  |     assert m.itemsize(a) == 8 | ||
|  |     assert m.nbytes(a) == 8 | ||
|  |     assert m.owndata(a) | ||
|  | 
 | ||
|  |     a = np.array([[1, 2, 3], [4, 5, 6]], "u2").view() | ||
|  |     a.flags.writeable = False | ||
|  |     assert m.ndim(a) == 2 | ||
|  |     assert all(m.shape(a) == [2, 3]) | ||
|  |     assert m.shape(a, 0) == 2 | ||
|  |     assert m.shape(a, 1) == 3 | ||
|  |     assert all(m.strides(a) == [6, 2]) | ||
|  |     assert m.strides(a, 0) == 6 | ||
|  |     assert m.strides(a, 1) == 2 | ||
|  |     with pytest.raises(IndexError) as excinfo: | ||
|  |         m.shape(a, 2) | ||
|  |     assert str(excinfo.value) == "invalid axis: 2 (ndim = 2)" | ||
|  |     with pytest.raises(IndexError) as excinfo: | ||
|  |         m.strides(a, 2) | ||
|  |     assert str(excinfo.value) == "invalid axis: 2 (ndim = 2)" | ||
|  |     assert not m.writeable(a) | ||
|  |     assert m.size(a) == 6 | ||
|  |     assert m.itemsize(a) == 2 | ||
|  |     assert m.nbytes(a) == 12 | ||
|  |     assert not m.owndata(a) | ||
|  | 
 | ||
|  | 
 | ||
|  | @pytest.mark.parametrize( | ||
|  |     "args, ret", [([], 0), ([0], 0), ([1], 3), ([0, 1], 1), ([1, 2], 5)] | ||
|  | ) | ||
|  | def test_index_offset(arr, args, ret): | ||
|  |     assert m.index_at(arr, *args) == ret | ||
|  |     assert m.index_at_t(arr, *args) == ret | ||
|  |     assert m.offset_at(arr, *args) == ret * arr.dtype.itemsize | ||
|  |     assert m.offset_at_t(arr, *args) == ret * arr.dtype.itemsize | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_dim_check_fail(arr): | ||
|  |     for func in ( | ||
|  |         m.index_at, | ||
|  |         m.index_at_t, | ||
|  |         m.offset_at, | ||
|  |         m.offset_at_t, | ||
|  |         m.data, | ||
|  |         m.data_t, | ||
|  |         m.mutate_data, | ||
|  |         m.mutate_data_t, | ||
|  |     ): | ||
|  |         with pytest.raises(IndexError) as excinfo: | ||
|  |             func(arr, 1, 2, 3) | ||
|  |         assert str(excinfo.value) == "too many indices for an array: 3 (ndim = 2)" | ||
|  | 
 | ||
|  | 
 | ||
|  | @pytest.mark.parametrize( | ||
|  |     "args, ret", | ||
|  |     [ | ||
|  |         ([], [1, 2, 3, 4, 5, 6]), | ||
|  |         ([1], [4, 5, 6]), | ||
|  |         ([0, 1], [2, 3, 4, 5, 6]), | ||
|  |         ([1, 2], [6]), | ||
|  |     ], | ||
|  | ) | ||
|  | def test_data(arr, args, ret): | ||
|  |     from sys import byteorder | ||
|  | 
 | ||
|  |     assert all(m.data_t(arr, *args) == ret) | ||
|  |     assert all(m.data(arr, *args)[(0 if byteorder == "little" else 1) :: 2] == ret) | ||
|  |     assert all(m.data(arr, *args)[(1 if byteorder == "little" else 0) :: 2] == 0) | ||
|  | 
 | ||
|  | 
 | ||
|  | @pytest.mark.parametrize("dim", [0, 1, 3]) | ||
|  | def test_at_fail(arr, dim): | ||
|  |     for func in m.at_t, m.mutate_at_t: | ||
|  |         with pytest.raises(IndexError) as excinfo: | ||
|  |             func(arr, *([0] * dim)) | ||
|  |         assert str(excinfo.value) == f"index dimension mismatch: {dim} (ndim = 2)" | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_at(arr): | ||
|  |     assert m.at_t(arr, 0, 2) == 3 | ||
|  |     assert m.at_t(arr, 1, 0) == 4 | ||
|  | 
 | ||
|  |     assert all(m.mutate_at_t(arr, 0, 2).ravel() == [1, 2, 4, 4, 5, 6]) | ||
|  |     assert all(m.mutate_at_t(arr, 1, 0).ravel() == [1, 2, 4, 5, 5, 6]) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_mutate_readonly(arr): | ||
|  |     arr.flags.writeable = False | ||
|  |     for func, args in ( | ||
|  |         (m.mutate_data, ()), | ||
|  |         (m.mutate_data_t, ()), | ||
|  |         (m.mutate_at_t, (0, 0)), | ||
|  |     ): | ||
|  |         with pytest.raises(ValueError) as excinfo: | ||
|  |             func(arr, *args) | ||
|  |         assert str(excinfo.value) == "array is not writeable" | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_mutate_data(arr): | ||
|  |     assert all(m.mutate_data(arr).ravel() == [2, 4, 6, 8, 10, 12]) | ||
|  |     assert all(m.mutate_data(arr).ravel() == [4, 8, 12, 16, 20, 24]) | ||
|  |     assert all(m.mutate_data(arr, 1).ravel() == [4, 8, 12, 32, 40, 48]) | ||
|  |     assert all(m.mutate_data(arr, 0, 1).ravel() == [4, 16, 24, 64, 80, 96]) | ||
|  |     assert all(m.mutate_data(arr, 1, 2).ravel() == [4, 16, 24, 64, 80, 192]) | ||
|  | 
 | ||
|  |     assert all(m.mutate_data_t(arr).ravel() == [5, 17, 25, 65, 81, 193]) | ||
|  |     assert all(m.mutate_data_t(arr).ravel() == [6, 18, 26, 66, 82, 194]) | ||
|  |     assert all(m.mutate_data_t(arr, 1).ravel() == [6, 18, 26, 67, 83, 195]) | ||
|  |     assert all(m.mutate_data_t(arr, 0, 1).ravel() == [6, 19, 27, 68, 84, 196]) | ||
|  |     assert all(m.mutate_data_t(arr, 1, 2).ravel() == [6, 19, 27, 68, 84, 197]) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_bounds_check(arr): | ||
|  |     for func in ( | ||
|  |         m.index_at, | ||
|  |         m.index_at_t, | ||
|  |         m.data, | ||
|  |         m.data_t, | ||
|  |         m.mutate_data, | ||
|  |         m.mutate_data_t, | ||
|  |         m.at_t, | ||
|  |         m.mutate_at_t, | ||
|  |     ): | ||
|  |         with pytest.raises(IndexError) as excinfo: | ||
|  |             func(arr, 2, 0) | ||
|  |         assert str(excinfo.value) == "index 2 is out of bounds for axis 0 with size 2" | ||
|  |         with pytest.raises(IndexError) as excinfo: | ||
|  |             func(arr, 0, 4) | ||
|  |         assert str(excinfo.value) == "index 4 is out of bounds for axis 1 with size 3" | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_make_c_f_array(): | ||
|  |     assert m.make_c_array().flags.c_contiguous | ||
|  |     assert not m.make_c_array().flags.f_contiguous | ||
|  |     assert m.make_f_array().flags.f_contiguous | ||
|  |     assert not m.make_f_array().flags.c_contiguous | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_make_empty_shaped_array(): | ||
|  |     m.make_empty_shaped_array() | ||
|  | 
 | ||
|  |     # empty shape means numpy scalar, PEP 3118 | ||
|  |     assert m.scalar_int().ndim == 0 | ||
|  |     assert m.scalar_int().shape == () | ||
|  |     assert m.scalar_int() == 42 | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_wrap(): | ||
|  |     def assert_references(a, b, base=None): | ||
|  |         if base is None: | ||
|  |             base = a | ||
|  |         assert a is not b | ||
|  |         assert a.__array_interface__["data"][0] == b.__array_interface__["data"][0] | ||
|  |         assert a.shape == b.shape | ||
|  |         assert a.strides == b.strides | ||
|  |         assert a.flags.c_contiguous == b.flags.c_contiguous | ||
|  |         assert a.flags.f_contiguous == b.flags.f_contiguous | ||
|  |         assert a.flags.writeable == b.flags.writeable | ||
|  |         assert a.flags.aligned == b.flags.aligned | ||
|  |         # 1.13 supported Python 3.6 | ||
|  |         if tuple(int(x) for x in np.__version__.split(".")[:2]) >= (1, 14): | ||
|  |             assert a.flags.writebackifcopy == b.flags.writebackifcopy | ||
|  |         else: | ||
|  |             assert a.flags.updateifcopy == b.flags.updateifcopy | ||
|  |         assert np.all(a == b) | ||
|  |         assert not b.flags.owndata | ||
|  |         assert b.base is base | ||
|  |         if a.flags.writeable and a.ndim == 2: | ||
|  |             a[0, 0] = 1234 | ||
|  |             assert b[0, 0] == 1234 | ||
|  | 
 | ||
|  |     a1 = np.array([1, 2], dtype=np.int16) | ||
|  |     assert a1.flags.owndata and a1.base is None | ||
|  |     a2 = m.wrap(a1) | ||
|  |     assert_references(a1, a2) | ||
|  | 
 | ||
|  |     a1 = np.array([[1, 2], [3, 4]], dtype=np.float32, order="F") | ||
|  |     assert a1.flags.owndata and a1.base is None | ||
|  |     a2 = m.wrap(a1) | ||
|  |     assert_references(a1, a2) | ||
|  | 
 | ||
|  |     a1 = np.array([[1, 2], [3, 4]], dtype=np.float32, order="C") | ||
|  |     a1.flags.writeable = False | ||
|  |     a2 = m.wrap(a1) | ||
|  |     assert_references(a1, a2) | ||
|  | 
 | ||
|  |     a1 = np.random.random((4, 4, 4)) | ||
|  |     a2 = m.wrap(a1) | ||
|  |     assert_references(a1, a2) | ||
|  | 
 | ||
|  |     a1t = a1.transpose() | ||
|  |     a2 = m.wrap(a1t) | ||
|  |     assert_references(a1t, a2, a1) | ||
|  | 
 | ||
|  |     a1d = a1.diagonal() | ||
|  |     a2 = m.wrap(a1d) | ||
|  |     assert_references(a1d, a2, a1) | ||
|  | 
 | ||
|  |     a1m = a1[::-1, ::-1, ::-1] | ||
|  |     a2 = m.wrap(a1m) | ||
|  |     assert_references(a1m, a2, a1) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_numpy_view(capture): | ||
|  |     with capture: | ||
|  |         ac = m.ArrayClass() | ||
|  |         ac_view_1 = ac.numpy_view() | ||
|  |         ac_view_2 = ac.numpy_view() | ||
|  |         assert np.all(ac_view_1 == np.array([1, 2], dtype=np.int32)) | ||
|  |         del ac | ||
|  |         pytest.gc_collect() | ||
|  |     assert ( | ||
|  |         capture | ||
|  |         == """
 | ||
|  |         ArrayClass() | ||
|  |         ArrayClass::numpy_view() | ||
|  |         ArrayClass::numpy_view() | ||
|  |     """
 | ||
|  |     ) | ||
|  |     ac_view_1[0] = 4 | ||
|  |     ac_view_1[1] = 3 | ||
|  |     assert ac_view_2[0] == 4 | ||
|  |     assert ac_view_2[1] == 3 | ||
|  |     with capture: | ||
|  |         del ac_view_1 | ||
|  |         del ac_view_2 | ||
|  |         pytest.gc_collect() | ||
|  |         pytest.gc_collect() | ||
|  |     assert ( | ||
|  |         capture | ||
|  |         == """
 | ||
|  |         ~ArrayClass() | ||
|  |     """
 | ||
|  |     ) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_cast_numpy_int64_to_uint64(): | ||
|  |     m.function_taking_uint64(123) | ||
|  |     m.function_taking_uint64(np.uint64(123)) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_isinstance(): | ||
|  |     assert m.isinstance_untyped(np.array([1, 2, 3]), "not an array") | ||
|  |     assert m.isinstance_typed(np.array([1.0, 2.0, 3.0])) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_constructors(): | ||
|  |     defaults = m.default_constructors() | ||
|  |     for a in defaults.values(): | ||
|  |         assert a.size == 0 | ||
|  |     assert defaults["array"].dtype == np.array([]).dtype | ||
|  |     assert defaults["array_t<int32>"].dtype == np.int32 | ||
|  |     assert defaults["array_t<double>"].dtype == np.float64 | ||
|  | 
 | ||
|  |     results = m.converting_constructors([1, 2, 3]) | ||
|  |     for a in results.values(): | ||
|  |         np.testing.assert_array_equal(a, [1, 2, 3]) | ||
|  |     assert results["array"].dtype == np.int_ | ||
|  |     assert results["array_t<int32>"].dtype == np.int32 | ||
|  |     assert results["array_t<double>"].dtype == np.float64 | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_overload_resolution(msg): | ||
|  |     # Exact overload matches: | ||
|  |     assert m.overloaded(np.array([1], dtype="float64")) == "double" | ||
|  |     assert m.overloaded(np.array([1], dtype="float32")) == "float" | ||
|  |     assert m.overloaded(np.array([1], dtype="ushort")) == "unsigned short" | ||
|  |     assert m.overloaded(np.array([1], dtype="intc")) == "int" | ||
|  |     assert m.overloaded(np.array([1], dtype="longlong")) == "long long" | ||
|  |     assert m.overloaded(np.array([1], dtype="complex")) == "double complex" | ||
|  |     assert m.overloaded(np.array([1], dtype="csingle")) == "float complex" | ||
|  | 
 | ||
|  |     # No exact match, should call first convertible version: | ||
|  |     assert m.overloaded(np.array([1], dtype="uint8")) == "double" | ||
|  | 
 | ||
|  |     with pytest.raises(TypeError) as excinfo: | ||
|  |         m.overloaded("not an array") | ||
|  |     assert ( | ||
|  |         msg(excinfo.value) | ||
|  |         == """
 | ||
|  |         overloaded(): incompatible function arguments. The following argument types are supported: | ||
|  |             1. (arg0: numpy.ndarray[numpy.float64]) -> str | ||
|  |             2. (arg0: numpy.ndarray[numpy.float32]) -> str | ||
|  |             3. (arg0: numpy.ndarray[numpy.int32]) -> str | ||
|  |             4. (arg0: numpy.ndarray[numpy.uint16]) -> str | ||
|  |             5. (arg0: numpy.ndarray[numpy.int64]) -> str | ||
|  |             6. (arg0: numpy.ndarray[numpy.complex128]) -> str | ||
|  |             7. (arg0: numpy.ndarray[numpy.complex64]) -> str | ||
|  | 
 | ||
|  |         Invoked with: 'not an array' | ||
|  |     """
 | ||
|  |     ) | ||
|  | 
 | ||
|  |     assert m.overloaded2(np.array([1], dtype="float64")) == "double" | ||
|  |     assert m.overloaded2(np.array([1], dtype="float32")) == "float" | ||
|  |     assert m.overloaded2(np.array([1], dtype="complex64")) == "float complex" | ||
|  |     assert m.overloaded2(np.array([1], dtype="complex128")) == "double complex" | ||
|  |     assert m.overloaded2(np.array([1], dtype="float32")) == "float" | ||
|  | 
 | ||
|  |     assert m.overloaded3(np.array([1], dtype="float64")) == "double" | ||
|  |     assert m.overloaded3(np.array([1], dtype="intc")) == "int" | ||
|  |     expected_exc = """
 | ||
|  |         overloaded3(): incompatible function arguments. The following argument types are supported: | ||
|  |             1. (arg0: numpy.ndarray[numpy.int32]) -> str | ||
|  |             2. (arg0: numpy.ndarray[numpy.float64]) -> str | ||
|  | 
 | ||
|  |         Invoked with: """
 | ||
|  | 
 | ||
|  |     with pytest.raises(TypeError) as excinfo: | ||
|  |         m.overloaded3(np.array([1], dtype="uintc")) | ||
|  |     assert msg(excinfo.value) == expected_exc + repr(np.array([1], dtype="uint32")) | ||
|  |     with pytest.raises(TypeError) as excinfo: | ||
|  |         m.overloaded3(np.array([1], dtype="float32")) | ||
|  |     assert msg(excinfo.value) == expected_exc + repr(np.array([1.0], dtype="float32")) | ||
|  |     with pytest.raises(TypeError) as excinfo: | ||
|  |         m.overloaded3(np.array([1], dtype="complex")) | ||
|  |     assert msg(excinfo.value) == expected_exc + repr(np.array([1.0 + 0.0j])) | ||
|  | 
 | ||
|  |     # Exact matches: | ||
|  |     assert m.overloaded4(np.array([1], dtype="double")) == "double" | ||
|  |     assert m.overloaded4(np.array([1], dtype="longlong")) == "long long" | ||
|  |     # Non-exact matches requiring conversion.  Since float to integer isn't a | ||
|  |     # save conversion, it should go to the double overload, but short can go to | ||
|  |     # either (and so should end up on the first-registered, the long long). | ||
|  |     assert m.overloaded4(np.array([1], dtype="float32")) == "double" | ||
|  |     assert m.overloaded4(np.array([1], dtype="short")) == "long long" | ||
|  | 
 | ||
|  |     assert m.overloaded5(np.array([1], dtype="double")) == "double" | ||
|  |     assert m.overloaded5(np.array([1], dtype="uintc")) == "unsigned int" | ||
|  |     assert m.overloaded5(np.array([1], dtype="float32")) == "unsigned int" | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_greedy_string_overload(): | ||
|  |     """Tests fix for #685 - ndarray shouldn't go to std::string overload""" | ||
|  | 
 | ||
|  |     assert m.issue685("abc") == "string" | ||
|  |     assert m.issue685(np.array([97, 98, 99], dtype="b")) == "array" | ||
|  |     assert m.issue685(123) == "other" | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_array_unchecked_fixed_dims(msg): | ||
|  |     z1 = np.array([[1, 2], [3, 4]], dtype="float64") | ||
|  |     m.proxy_add2(z1, 10) | ||
|  |     assert np.all(z1 == [[11, 12], [13, 14]]) | ||
|  | 
 | ||
|  |     with pytest.raises(ValueError) as excinfo: | ||
|  |         m.proxy_add2(np.array([1.0, 2, 3]), 5.0) | ||
|  |     assert ( | ||
|  |         msg(excinfo.value) == "array has incorrect number of dimensions: 1; expected 2" | ||
|  |     ) | ||
|  | 
 | ||
|  |     expect_c = np.ndarray(shape=(3, 3, 3), buffer=np.array(range(3, 30)), dtype="int") | ||
|  |     assert np.all(m.proxy_init3(3.0) == expect_c) | ||
|  |     expect_f = np.transpose(expect_c) | ||
|  |     assert np.all(m.proxy_init3F(3.0) == expect_f) | ||
|  | 
 | ||
|  |     assert m.proxy_squared_L2_norm(np.array(range(6))) == 55 | ||
|  |     assert m.proxy_squared_L2_norm(np.array(range(6), dtype="float64")) == 55 | ||
|  | 
 | ||
|  |     assert m.proxy_auxiliaries2(z1) == [11, 11, True, 2, 8, 2, 2, 4, 32] | ||
|  |     assert m.proxy_auxiliaries2(z1) == m.array_auxiliaries2(z1) | ||
|  | 
 | ||
|  |     assert m.proxy_auxiliaries1_const_ref(z1[0, :]) | ||
|  |     assert m.proxy_auxiliaries2_const_ref(z1) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_array_unchecked_dyn_dims(): | ||
|  |     z1 = np.array([[1, 2], [3, 4]], dtype="float64") | ||
|  |     m.proxy_add2_dyn(z1, 10) | ||
|  |     assert np.all(z1 == [[11, 12], [13, 14]]) | ||
|  | 
 | ||
|  |     expect_c = np.ndarray(shape=(3, 3, 3), buffer=np.array(range(3, 30)), dtype="int") | ||
|  |     assert np.all(m.proxy_init3_dyn(3.0) == expect_c) | ||
|  | 
 | ||
|  |     assert m.proxy_auxiliaries2_dyn(z1) == [11, 11, True, 2, 8, 2, 2, 4, 32] | ||
|  |     assert m.proxy_auxiliaries2_dyn(z1) == m.array_auxiliaries2(z1) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_array_failure(): | ||
|  |     with pytest.raises(ValueError) as excinfo: | ||
|  |         m.array_fail_test() | ||
|  |     assert str(excinfo.value) == "cannot create a pybind11::array from a nullptr" | ||
|  | 
 | ||
|  |     with pytest.raises(ValueError) as excinfo: | ||
|  |         m.array_t_fail_test() | ||
|  |     assert str(excinfo.value) == "cannot create a pybind11::array_t from a nullptr" | ||
|  | 
 | ||
|  |     with pytest.raises(ValueError) as excinfo: | ||
|  |         m.array_fail_test_negative_size() | ||
|  |     assert str(excinfo.value) == "negative dimensions are not allowed" | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_initializer_list(): | ||
|  |     assert m.array_initializer_list1().shape == (1,) | ||
|  |     assert m.array_initializer_list2().shape == (1, 2) | ||
|  |     assert m.array_initializer_list3().shape == (1, 2, 3) | ||
|  |     assert m.array_initializer_list4().shape == (1, 2, 3, 4) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_array_resize(): | ||
|  |     a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype="float64") | ||
|  |     m.array_reshape2(a) | ||
|  |     assert a.size == 9 | ||
|  |     assert np.all(a == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | ||
|  | 
 | ||
|  |     # total size change should succced with refcheck off | ||
|  |     m.array_resize3(a, 4, False) | ||
|  |     assert a.size == 64 | ||
|  |     # ... and fail with refcheck on | ||
|  |     try: | ||
|  |         m.array_resize3(a, 3, True) | ||
|  |     except ValueError as e: | ||
|  |         assert str(e).startswith("cannot resize an array") | ||
|  |     # transposed array doesn't own data | ||
|  |     b = a.transpose() | ||
|  |     try: | ||
|  |         m.array_resize3(b, 3, False) | ||
|  |     except ValueError as e: | ||
|  |         assert str(e).startswith("cannot resize this array: it does not own its data") | ||
|  |     # ... but reshape should be fine | ||
|  |     m.array_reshape2(b) | ||
|  |     assert b.shape == (8, 8) | ||
|  | 
 | ||
|  | 
 | ||
|  | @pytest.mark.xfail("env.PYPY") | ||
|  | def test_array_create_and_resize(): | ||
|  |     a = m.create_and_resize(2) | ||
|  |     assert a.size == 4 | ||
|  |     assert np.all(a == 42.0) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_array_view(): | ||
|  |     a = np.ones(100 * 4).astype("uint8") | ||
|  |     a_float_view = m.array_view(a, "float32") | ||
|  |     assert a_float_view.shape == (100 * 1,)  # 1 / 4 bytes = 8 / 32 | ||
|  | 
 | ||
|  |     a_int16_view = m.array_view(a, "int16")  # 1 / 2 bytes = 16 / 32 | ||
|  |     assert a_int16_view.shape == (100 * 2,) | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_array_view_invalid(): | ||
|  |     a = np.ones(100 * 4).astype("uint8") | ||
|  |     with pytest.raises(TypeError): | ||
|  |         m.array_view(a, "deadly_dtype") | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_reshape_initializer_list(): | ||
|  |     a = np.arange(2 * 7 * 3) + 1 | ||
|  |     x = m.reshape_initializer_list(a, 2, 7, 3) | ||
|  |     assert x.shape == (2, 7, 3) | ||
|  |     assert list(x[1][4]) == [34, 35, 36] | ||
|  |     with pytest.raises(ValueError) as excinfo: | ||
|  |         m.reshape_initializer_list(a, 1, 7, 3) | ||
|  |     assert str(excinfo.value) == "cannot reshape array of size 42 into shape (1,7,3)" | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_reshape_tuple(): | ||
|  |     a = np.arange(3 * 7 * 2) + 1 | ||
|  |     x = m.reshape_tuple(a, (3, 7, 2)) | ||
|  |     assert x.shape == (3, 7, 2) | ||
|  |     assert list(x[1][4]) == [23, 24] | ||
|  |     y = m.reshape_tuple(x, (x.size,)) | ||
|  |     assert y.shape == (42,) | ||
|  |     with pytest.raises(ValueError) as excinfo: | ||
|  |         m.reshape_tuple(a, (3, 7, 1)) | ||
|  |     assert str(excinfo.value) == "cannot reshape array of size 42 into shape (3,7,1)" | ||
|  |     with pytest.raises(ValueError) as excinfo: | ||
|  |         m.reshape_tuple(a, ()) | ||
|  |     assert str(excinfo.value) == "cannot reshape array of size 42 into shape ()" | ||
|  | 
 | ||
|  | 
 | ||
|  | def test_index_using_ellipsis(): | ||
|  |     a = m.index_using_ellipsis(np.zeros((5, 6, 7))) | ||
|  |     assert a.shape == (6,) | ||
|  | 
 | ||
|  | 
 | ||
|  | @pytest.mark.parametrize( | ||
|  |     "test_func", | ||
|  |     [ | ||
|  |         m.test_fmt_desc_float, | ||
|  |         m.test_fmt_desc_double, | ||
|  |         m.test_fmt_desc_const_float, | ||
|  |         m.test_fmt_desc_const_double, | ||
|  |     ], | ||
|  | ) | ||
|  | def test_format_descriptors_for_floating_point_types(test_func): | ||
|  |     assert "numpy.ndarray[numpy.float" in test_func.__doc__ | ||
|  | 
 | ||
|  | 
 | ||
|  | @pytest.mark.parametrize("forcecast", [False, True]) | ||
|  | @pytest.mark.parametrize("contiguity", [None, "C", "F"]) | ||
|  | @pytest.mark.parametrize("noconvert", [False, True]) | ||
|  | @pytest.mark.filterwarnings( | ||
|  |     "ignore:Casting complex values to real discards the imaginary part:numpy.ComplexWarning" | ||
|  | ) | ||
|  | def test_argument_conversions(forcecast, contiguity, noconvert): | ||
|  |     function_name = "accept_double" | ||
|  |     if contiguity == "C": | ||
|  |         function_name += "_c_style" | ||
|  |     elif contiguity == "F": | ||
|  |         function_name += "_f_style" | ||
|  |     if forcecast: | ||
|  |         function_name += "_forcecast" | ||
|  |     if noconvert: | ||
|  |         function_name += "_noconvert" | ||
|  |     function = getattr(m, function_name) | ||
|  | 
 | ||
|  |     for dtype in [np.dtype("float32"), np.dtype("float64"), np.dtype("complex128")]: | ||
|  |         for order in ["C", "F"]: | ||
|  |             for shape in [(2, 2), (1, 3, 1, 1), (1, 1, 1), (0,)]: | ||
|  |                 if not noconvert: | ||
|  |                     # If noconvert is not passed, only complex128 needs to be truncated and | ||
|  |                     # "cannot be safely obtained". So without `forcecast`, the argument shouldn't | ||
|  |                     # be accepted. | ||
|  |                     should_raise = dtype.name == "complex128" and not forcecast | ||
|  |                 else: | ||
|  |                     # If noconvert is passed, only float64 and the matching order is accepted. | ||
|  |                     # If at most one dimension has a size greater than 1, the array is also | ||
|  |                     # trivially contiguous. | ||
|  |                     trivially_contiguous = sum(1 for d in shape if d > 1) <= 1 | ||
|  |                     should_raise = dtype.name != "float64" or ( | ||
|  |                         contiguity is not None | ||
|  |                         and contiguity != order | ||
|  |                         and not trivially_contiguous | ||
|  |                     ) | ||
|  | 
 | ||
|  |                 array = np.zeros(shape, dtype=dtype, order=order) | ||
|  |                 if not should_raise: | ||
|  |                     function(array) | ||
|  |                 else: | ||
|  |                     with pytest.raises( | ||
|  |                         TypeError, match="incompatible function arguments" | ||
|  |                     ): | ||
|  |                         function(array) | ||
|  | 
 | ||
|  | 
 | ||
|  | @pytest.mark.xfail("env.PYPY") | ||
|  | def test_dtype_refcount_leak(): | ||
|  |     from sys import getrefcount | ||
|  | 
 | ||
|  |     dtype = np.dtype(np.float_) | ||
|  |     a = np.array([1], dtype=dtype) | ||
|  |     before = getrefcount(dtype) | ||
|  |     m.ndim(a) | ||
|  |     after = getrefcount(dtype) | ||
|  |     assert after == before |