153 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			153 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Matlab
		
	
	
|  | close all | ||
|  | clc | ||
|  | 
 | ||
|  | import gtsam.*; | ||
|  | disp('Example of application of ISAM2 for visual-inertial navigation on the KITTI VISION BENCHMARK SUITE (http://www.computervisiononline.com/dataset/kitti-vision-benchmark-suite)') | ||
|  | 
 | ||
|  | %% Read metadata and compute relative sensor pose transforms | ||
|  | % IMU metadata | ||
|  | disp('-- Reading sensor metadata') | ||
|  | IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt'); | ||
|  | IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2); | ||
|  | IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz; | ||
|  |   IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]); | ||
|  | if ~IMUinBody.equals(Pose3, 1e-5) | ||
|  |   error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same'; | ||
|  | end | ||
|  | 
 | ||
|  | % VO metadata | ||
|  | VO_metadata = importdata('KittiRelativePose_metadata.txt'); | ||
|  | VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2); | ||
|  | VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz; | ||
|  |   VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]); | ||
|  | VOinIMU = IMUinBody.inverse().compose(VOinBody); | ||
|  | 
 | ||
|  | %% Read data and change coordinate frame of GPS and VO measurements to IMU frame | ||
|  | disp('-- Reading sensor data from file') | ||
|  | % IMU data | ||
|  | IMU_data = importdata('KittiEquivBiasedImu.txt'); | ||
|  | IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2); | ||
|  | imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false); | ||
|  | [IMU_data.acc_omega] = deal(imum{:}); | ||
|  | clear imum | ||
|  | 
 | ||
|  | % VO data | ||
|  | VO_data = importdata('KittiRelativePose.txt'); | ||
|  | VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2); | ||
|  | % Merge relative pose fields and convert to Pose3 | ||
|  | logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ]; | ||
|  | logposes = num2cell(logposes, 2); | ||
|  | relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes); | ||
|  | relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes); | ||
|  | [VO_data.RelativePose] = deal(relposes{:}); | ||
|  | VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' }); | ||
|  | noiseModelVO = noiseModel.Diagonal.Sigmas([ VO_metadata.RotationSigma * [1;1;1]; VO_metadata.TranslationSigma * [1;1;1] ]); | ||
|  | clear logposes relposes | ||
|  | 
 | ||
|  | %% Get initial conditions for the estimated trajectory | ||
|  | currentPoseGlobal = Pose3; | ||
|  | currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning | ||
|  | currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1)); | ||
|  | sigma_init_x = noiseModel.Isotropic.Sigmas([ 1.0; 1.0; 0.01; 0.01; 0.01; 0.01 ]); | ||
|  | sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0); | ||
|  | sigma_init_b = noiseModel.Isotropic.Sigmas([ 0.100; 0.100; 0.100; 5.00e-05; 5.00e-05; 5.00e-05 ]); | ||
|  | sigma_between_b = [ IMU_metadata.AccelerometerBiasSigma * ones(3,1); IMU_metadata.GyroscopeBiasSigma * ones(3,1) ]; | ||
|  | g = [0;0;-9.8]; | ||
|  | w_coriolis = [0;0;0]; | ||
|  | 
 | ||
|  | %% Solver object | ||
|  | isamParams = ISAM2Params; | ||
|  | isamParams.setFactorization('CHOLESKY'); | ||
|  | isamParams.setRelinearizeSkip(10); | ||
|  | isam = gtsam.ISAM2(isamParams); | ||
|  | newFactors = NonlinearFactorGraph; | ||
|  | newValues = Values; | ||
|  | 
 | ||
|  | %% Main loop: | ||
|  | % (1) we read the measurements | ||
|  | % (2) we create the corresponding factors in the graph | ||
|  | % (3) we solve the graph to obtain and optimal estimate of robot trajectory | ||
|  | timestamps = [VO_data.Time]'; | ||
|  | 
 | ||
|  | timestamps = timestamps(15:end,:); % there seem to be issues with the initial IMU measurements | ||
|  | IMUtimes = [IMU_data.Time]; | ||
|  | 
 | ||
|  | disp('-- Starting main loop: inference is performed at each time step, but we plot trajectory every 100 steps') | ||
|  | 
 | ||
|  | for measurementIndex = 1:length(timestamps) | ||
|  |    | ||
|  |   % At each non=IMU measurement we initialize a new node in the graph | ||
|  |   currentPoseKey = symbol('x',measurementIndex); | ||
|  |   currentVelKey =  symbol('v',measurementIndex); | ||
|  |   currentBiasKey = symbol('b',measurementIndex); | ||
|  |   t = timestamps(measurementIndex, 1); | ||
|  |    | ||
|  |   if measurementIndex == 1 | ||
|  |     %% Create initial estimate and prior on initial pose, velocity, and biases | ||
|  |     newValues.insert(currentPoseKey, currentPoseGlobal); | ||
|  |     newValues.insert(currentVelKey, currentVelocityGlobal); | ||
|  |     newValues.insert(currentBiasKey, currentBias); | ||
|  |     newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x)); | ||
|  |     newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v)); | ||
|  |     newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b)); | ||
|  |   else | ||
|  |     t_previous = timestamps(measurementIndex-1, 1); | ||
|  |     %% Summarize IMU data between the previous GPS measurement and now | ||
|  |     IMUindices = find(IMUtimes >= t_previous & IMUtimes <= t); | ||
|  |      | ||
|  |     currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ... | ||
|  |       currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ... | ||
|  |       IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3)); | ||
|  |      | ||
|  |     for imuIndex = IMUindices | ||
|  |       accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ]; | ||
|  |       omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ]; | ||
|  |       deltaT = IMU_data(imuIndex).dt; | ||
|  |       currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT); | ||
|  |     end | ||
|  |      | ||
|  |     % Create IMU factor | ||
|  |     newFactors.add(ImuFactor( ... | ||
|  |       currentPoseKey-1, currentVelKey-1, ... | ||
|  |       currentPoseKey, currentVelKey, ... | ||
|  |       currentBiasKey, currentSummarizedMeasurement, g, w_coriolis)); | ||
|  |      | ||
|  |     % LC: sigma_init_b is wrong: this should be some uncertainty on bias evolution given in the IMU metadata | ||
|  |     newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), ... | ||
|  |       noiseModel.Diagonal.Sigmas(sqrt(numel(IMUindices)) * sigma_between_b))); | ||
|  |      | ||
|  |     %% Create VO factor | ||
|  |       VOpose = VO_data(measurementIndex).RelativePose; | ||
|  |       newFactors.add(BetweenFactorPose3(currentPoseKey - 1, currentPoseKey, VOpose, noiseModelVO)); | ||
|  |      | ||
|  |     % Add initial value | ||
|  |     newValues.insert(currentPoseKey, currentPoseGlobal.compose(VOpose)); | ||
|  |     newValues.insert(currentVelKey, currentVelocityGlobal); | ||
|  |     newValues.insert(currentBiasKey, currentBias); | ||
|  |      | ||
|  |     % Update solver | ||
|  |     % ======================================================================= | ||
|  |     isam.update(newFactors, newValues); | ||
|  |     newFactors = NonlinearFactorGraph; | ||
|  |     newValues = Values; | ||
|  |      | ||
|  |     if rem(measurementIndex,100)==0 % plot every 100 time steps | ||
|  |       cla; | ||
|  |       plot3DTrajectory(isam.calculateEstimate, 'g-'); | ||
|  |       title('Estimated trajectory using ISAM2 (IMU+VO)') | ||
|  |       xlabel('[m]') | ||
|  |       ylabel('[m]') | ||
|  |       zlabel('[m]') | ||
|  |       axis equal | ||
|  |       drawnow; | ||
|  |     end | ||
|  |     % =======================================================================  | ||
|  |     currentPoseGlobal = isam.calculateEstimate(currentPoseKey); | ||
|  |     currentVelocityGlobal = isam.calculateEstimate(currentVelKey); | ||
|  |     currentBias = isam.calculateEstimate(currentBiasKey);    | ||
|  |   end | ||
|  |     | ||
|  | end % end main loop | ||
|  | 
 | ||
|  | disp('-- Reached end of sensor data') |