| 
									
										
										
										
											2013-07-31 23:25:06 +08:00
										 |  |  | %close all | 
					
						
							|  |  |  | %clc | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | import gtsam.*; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-07-31 23:25:06 +08:00
										 |  |  | %% Read metadata and compute relative sensor pose transforms | 
					
						
							|  |  |  | IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt'); | 
					
						
							|  |  |  | IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2); | 
					
						
							|  |  |  | IMUinBody = Pose3.Expmap([ | 
					
						
							|  |  |  |     IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz; | 
					
						
							|  |  |  |     IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]); | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  | if ~IMUinBody.equals(Pose3, 1e-5) | 
					
						
							|  |  |  |   error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same'; | 
					
						
							|  |  |  | end | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-07-31 23:25:06 +08:00
										 |  |  | VO_metadata = importdata('KittiRelativePose_metadata.txt'); | 
					
						
							|  |  |  | VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2); | 
					
						
							|  |  |  | VOinBody = Pose3.Expmap([ | 
					
						
							|  |  |  |     VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz; | 
					
						
							|  |  |  |     VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | GPS_metadata = importdata('KittiGps_metadata.txt'); | 
					
						
							|  |  |  | GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2); | 
					
						
							|  |  |  | GPSinBody = Pose3.Expmap([ | 
					
						
							|  |  |  |     GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz; | 
					
						
							|  |  |  |     GPS_metadata.BodyPrx; GPS_metadata.BodyPry; GPS_metadata.BodyPrz; ]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | VOinIMU = IMUinBody.inverse().compose(VOinBody); | 
					
						
							|  |  |  | GPSinIMU = IMUinBody.inverse().compose(GPSinBody); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Read data and change coordinate frame of GPS and VO measurements to IMU frame | 
					
						
							|  |  |  | IMU_data = importdata('KittiEquivBiasedImu.txt'); | 
					
						
							|  |  |  | IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2); | 
					
						
							|  |  |  | imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false); | 
					
						
							|  |  |  | [IMU_data.acc_omega] = deal(imum{:}); | 
					
						
							|  |  |  | IMU_data = rmfield(IMU_data, { 'accelX' 'accelY' 'accelZ' 'omegaX' 'omegaY' 'omegaZ' }); | 
					
						
							|  |  |  | clear imum | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | VO_data = importdata('KittiRelativePose.txt'); | 
					
						
							|  |  |  | VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2); | 
					
						
							|  |  |  | % Merge relative pose fields and convert to Pose3 | 
					
						
							|  |  |  | logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ]; | 
					
						
							|  |  |  | logposes = num2cell(logposes, 2); | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  | relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes); | 
					
						
							|  |  |  | relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes); | 
					
						
							| 
									
										
										
										
											2013-07-31 23:25:06 +08:00
										 |  |  | [VO_data.RelativePose] = deal(relposes{:}); | 
					
						
							|  |  |  | VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' }); | 
					
						
							|  |  |  | clear logposes relposes | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | GPS_data = importdata('KittiGps.txt'); | 
					
						
							|  |  |  | GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2); | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |    | 
					
						
							|  |  |  | %% Set initial conditions for the estimated trajectory | 
					
						
							|  |  |  | disp('TODO: we have GPS so this initialization is not right') | 
					
						
							|  |  |  | currentPoseGlobal = Pose3; % initial pose is the reference frame (navigation frame) | 
					
						
							|  |  |  | currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning | 
					
						
							|  |  |  | bias_acc = [0;0;0]; % we initialize accelerometer biases to zero | 
					
						
							|  |  |  | bias_omega = [0;0;0]; % we initialize gyro biases to zero | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Solver object | 
					
						
							|  |  |  | isamParams = ISAM2Params; | 
					
						
							|  |  |  | isamParams.setRelinearizeSkip(1); | 
					
						
							|  |  |  | isam = gtsam.ISAM2(isamParams); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% create nonlinear factor graph | 
					
						
							|  |  |  | factors = NonlinearFactorGraph; | 
					
						
							|  |  |  | values = Values; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Create prior on initial pose, velocity, and biases | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  | sigma_init_x = 1.0; | 
					
						
							|  |  |  | sigma_init_v = 1.0; | 
					
						
							|  |  |  | sigma_init_b = 1.0; | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | values.insert(symbol('x',0), currentPoseGlobal); | 
					
						
							|  |  |  | values.insert(symbol('v',0), LieVector(currentVelocityGlobal) ); | 
					
						
							|  |  |  | values.insert(symbol('b',0), imuBias.ConstantBias(bias_acc,bias_omega) ); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  | disp('TODO: we have GPS so this initialization is not right') | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  | % Prior on initial pose | 
					
						
							|  |  |  | factors.add(PriorFactorPose3(symbol('x',0), ... | 
					
						
							|  |  |  |   currentPoseGlobal, noiseModel.Isotropic.Sigma(6, sigma_init_x))); | 
					
						
							|  |  |  | % Prior on initial velocity | 
					
						
							|  |  |  | factors.add(PriorFactorLieVector(symbol('v',0), ... | 
					
						
							|  |  |  |   LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, sigma_init_v))); | 
					
						
							|  |  |  | % Prior on initial bias | 
					
						
							|  |  |  | factors.add(PriorFactorConstantBias(symbol('b',0), ... | 
					
						
							|  |  |  |   imuBias.ConstantBias(bias_acc,bias_omega), noiseModel.Isotropic.Sigma(6, sigma_init_b))); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Main loop: | 
					
						
							|  |  |  | % (1) we read the measurements | 
					
						
							|  |  |  | % (2) we create the corresponding factors in the graph | 
					
						
							|  |  |  | % (3) we solve the graph to obtain and optimal estimate of robot trajectory | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  | % lastTime = 0; TODO: delete? | 
					
						
							|  |  |  | % lastIndex = 0; TODO: delete? | 
					
						
							|  |  |  | currentSummarizedMeasurement = []; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | % Measurement types: | 
					
						
							|  |  |  | %   1: VO | 
					
						
							|  |  |  | %   2: GPS | 
					
						
							|  |  |  | %   3: IMU | 
					
						
							|  |  |  | times = sortrows( [ ... | 
					
						
							|  |  |  |   [VO_data.Time]' 1*ones(length([VO_data.Time]), 1); ... | 
					
						
							|  |  |  |   %[GPS_data.Time]' 2*ones(length([GPS_data.Time]), 1); ... | 
					
						
							|  |  |  |   [IMU_data.Time]' 3*ones(length([IMU_data.Time]), 1); ... | 
					
						
							|  |  |  |   ], 1); % this are the time-stamps at which we want to initialize a new node in the graph | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | t_previous = 0; | 
					
						
							|  |  |  | poseIndex = 0; | 
					
						
							|  |  |  | for measurementIndex = 1:size(times,1) | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |   % At each non=IMU measurement we initialize a new node in the graph | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |   currentPoseKey = symbol('x',poseIndex); | 
					
						
							|  |  |  |   currentVelKey = symbol('v',poseIndex); | 
					
						
							|  |  |  |   currentBiasKey = symbol('b',poseIndex); | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |    | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |   t = times(measurementIndex, 1); | 
					
						
							|  |  |  |   type = times(measurementIndex, 2); | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |    | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |   if type == 3 | 
					
						
							|  |  |  |     % Integrate IMU | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     if isempty(currentSummarizedMeasurement) | 
					
						
							|  |  |  |       % Create initial empty summarized measurement | 
					
						
							|  |  |  |       % we assume that each row of the IMU.txt file has the following structure: | 
					
						
							|  |  |  |       % timestamp delta_t acc_x acc_y acc_z omega_x omega_y omega_z | 
					
						
							|  |  |  |       currentBias = isam.calculateEstimate(currentBiasKey - 1); | 
					
						
							|  |  |  |       currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ... | 
					
						
							|  |  |  |         currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ... | 
					
						
							|  |  |  |         IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3)); | 
					
						
							|  |  |  |     end | 
					
						
							|  |  |  |      | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |     % Accumulate preintegrated measurement | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |     deltaT = IMU_data(index).dt; | 
					
						
							|  |  |  |     accMeas = IMU_data(index).acc_omega(1:3); | 
					
						
							|  |  |  |     omegaMeas = IMU_data(index).acc_omega(4:6); | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |     currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT); | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |      | 
					
						
							|  |  |  |   else | 
					
						
							|  |  |  |     % Create IMU factor | 
					
						
							|  |  |  |     factors.add(ImuFactor( ... | 
					
						
							|  |  |  |       currentPoseKey-1, currentVelKey-1, ... | 
					
						
							|  |  |  |       currentPoseKey, currentVelKey, ... | 
					
						
							|  |  |  |       currentBiasKey-1, currentSummarizedMeasurement, g, cor_v, ... | 
					
						
							|  |  |  |       currentSummarizedMeasurement.PreintMeasCov)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     % Reset summarized measurement | 
					
						
							|  |  |  |     currentSummarizedMeasurement = []; | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     if type == 1 | 
					
						
							|  |  |  |       % Create VO factor | 
					
						
							|  |  |  |     elseif type == 2 | 
					
						
							|  |  |  |       % Create GPS factor | 
					
						
							|  |  |  |     end | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     poseIndex = poseIndex + 1; | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |   end | 
					
						
							|  |  |  |    | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |   | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |   % ======================================================================= | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   %% add factor corresponding to GPS measurements (if available at the current time) | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  | %   % ======================================================================= | 
					
						
							|  |  |  | %   if isempty(  find(GPS_data(:,1) == t  ) ) == 0 % it is a GPS measurement | 
					
						
							|  |  |  | %     if length( find(GPS_data(:,1)) ) > 1 | 
					
						
							|  |  |  | %       error('more GPS measurements at the same time stamp: it should be an error') | 
					
						
							|  |  |  | %     end | 
					
						
							|  |  |  | %      | 
					
						
							|  |  |  | %     index = find(GPS_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate | 
					
						
							|  |  |  | %     GPSmeas = GPS_data(index,2:4); | 
					
						
							|  |  |  | %      | 
					
						
							|  |  |  | %     noiseModelGPS = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x)) | 
					
						
							|  |  |  | %      | 
					
						
							|  |  |  | %     % add factor | 
					
						
							|  |  |  | %     disp('TODO: is the GPS noise right?') | 
					
						
							|  |  |  | %     factors.add(PriorFactor???(currentPoseKey, GPSmeas, noiseModelGPS) ); | 
					
						
							|  |  |  | %   end | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |   % ======================================================================= | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   %% add factor corresponding to VO measurements (if available at the current time) | 
					
						
							|  |  |  |   % ======================================================================= | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |   if isempty(  find([VO_data.Time] == t, 1)  )== 0 % it is a GPS measurement | 
					
						
							|  |  |  |     if length( find([VO_data.Time] == t) ) > 1 | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |       error('more VO measurements at the same time stamp: it should be an error') | 
					
						
							|  |  |  |     end | 
					
						
							|  |  |  |      | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |     index = find([VO_data.Time] == t, 1); % the row of the IMU_data matrix that we have to integrate | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |      | 
					
						
							| 
									
										
										
										
											2013-08-03 04:07:52 +08:00
										 |  |  |     VOpose = VO_data(index).RelativePose; | 
					
						
							|  |  |  |     noiseModelVO = noiseModel.Diagonal.Sigmas([ IMU_metadata.RotationSigma * [1;1;1]; IMU_metadata.TranslationSigma * [1;1;1] ]); | 
					
						
							| 
									
										
										
										
											2013-07-31 06:55:56 +08:00
										 |  |  |      | 
					
						
							|  |  |  |     % add factor | 
					
						
							|  |  |  |     disp('TODO: is the VO noise right?') | 
					
						
							|  |  |  |     factors.add(BetweenFactorPose3(lastVOPoseKey, currentPoseKey, VOpose, noiseModelVO)); | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     lastVOPoseKey = currentPoseKey; | 
					
						
							|  |  |  |   end | 
					
						
							|  |  |  |   % ======================================================================= | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   disp('TODO: add values') | 
					
						
							|  |  |  |   %     values.insert(, initialPose); | 
					
						
							|  |  |  |   %   values.insert(symbol('v',lastIndex+1), initialVel); | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   %% Update solver | 
					
						
							|  |  |  |   % ======================================================================= | 
					
						
							|  |  |  |   isam.update(factors, values); | 
					
						
							|  |  |  |   factors = NonlinearFactorGraph; | 
					
						
							|  |  |  |   values = Values; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   isam.calculateEstimate(currentPoseKey); | 
					
						
							|  |  |  |   %   M = isam.marginalCovariance(key_pose); | 
					
						
							|  |  |  |   % ======================================================================= | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   previousPoseKey = currentPoseKey; | 
					
						
							|  |  |  |   previousVelKey = currentVelKey; | 
					
						
							|  |  |  |   t_previous = t; | 
					
						
							|  |  |  | end | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | disp('TODO: display results') | 
					
						
							|  |  |  | % figure(1) | 
					
						
							|  |  |  | % hold on; | 
					
						
							|  |  |  | % plot(positions(1,:), positions(2,:), '-b'); | 
					
						
							|  |  |  | % plot3DTrajectory(isam.calculateEstimate, 'g-'); | 
					
						
							|  |  |  | % axis equal; | 
					
						
							|  |  |  | % legend('true trajectory', 'traj integrated in body', 'traj integrated in nav') |