69 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			69 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Matlab
		
	
	
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | % GTSAM Copyright 2010, Georgia Tech Research Corporation,  | ||
|  | % Atlanta, Georgia 30332-0415 | ||
|  | % All Rights Reserved | ||
|  | % Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | %  | ||
|  | % See LICENSE for the license information | ||
|  | % | ||
|  | % @brief Example of a simple 2D localization example | ||
|  | % @author Frank Dellaert | ||
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | 
 | ||
|  | % Copied Original file. Modified by David Jensen to use Pose3 instead of | ||
|  | % Pose2. Everything else is the same. | ||
|  | 
 | ||
|  | import gtsam.* | ||
|  | 
 | ||
|  | %% Assumptions | ||
|  | %  - Robot poses are facing along the X axis (horizontal, to the right in 2D) | ||
|  | %  - The robot moves 2 meters each step | ||
|  | %  - The robot is on a grid, moving 2 meters each step | ||
|  | 
 | ||
|  | %% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) | ||
|  | graph = NonlinearFactorGraph; | ||
|  | 
 | ||
|  | %% Add a Gaussian prior on pose x_1 | ||
|  | priorMean = Pose3();%Pose3.Expmap([0.0; 0.0; 0.0; 0.0; 0.0; 0.0]); % prior mean is at origin | ||
|  | priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.3; 0.1; 0.1; 0.1]); % 30cm std on x,y, 0.1 rad on theta | ||
|  | graph.add(PriorFactorPose3(1, priorMean, priorNoise)); % add directly to graph | ||
|  | 
 | ||
|  | %% Add two odometry factors | ||
|  | odometry = Pose3.Expmap([0.0; 0.0; 0.0; 2.0; 0.0; 0.0]); % create a measurement for both factors (the same in this case) | ||
|  | odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.2; 0.1; 0.1; 0.1]); % 20cm std on x,y, 0.1 rad on theta | ||
|  | graph.add(BetweenFactorPose3(1, 2, odometry, odometryNoise)); | ||
|  | graph.add(BetweenFactorPose3(2, 3, odometry, odometryNoise)); | ||
|  | 
 | ||
|  | %% print | ||
|  | graph.print(sprintf('\nFactor graph:\n')); | ||
|  | 
 | ||
|  | %% Initialize to noisy points | ||
|  | initialEstimate = Values; | ||
|  | %initialEstimate.insert(1, Pose3.Expmap([0.2; 0.1; 0.1; 0.5; 0.0; 0.0])); | ||
|  | %initialEstimate.insert(2, Pose3.Expmap([-0.2; 0.1; -0.1; 2.3; 0.1; 0.1])); | ||
|  | %initialEstimate.insert(3, Pose3.Expmap([0.1; -0.1; 0.1; 4.1; 0.1; -0.1])); | ||
|  | %initialEstimate.print(sprintf('\nInitial estimate:\n  ')); | ||
|  | 
 | ||
|  | for i=1:3 | ||
|  |   deltaPosition = 0.5*rand(3,1) + [1;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5 | ||
|  |   deltaRotation = 0.1*rand(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad) | ||
|  |   deltaPose = Pose3.Expmap([deltaRotation; deltaPosition]); | ||
|  |   currentPose = currentPose.compose(deltaPose); | ||
|  |   initialEstimate.insert(i, currentPose); | ||
|  | end | ||
|  | 
 | ||
|  | %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd | ||
|  | optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate); | ||
|  | result = optimizer.optimizeSafely(); | ||
|  | result.print(sprintf('\nFinal result:\n  ')); | ||
|  | 
 | ||
|  | %% Plot trajectory and covariance ellipses | ||
|  | cla; | ||
|  | hold on; | ||
|  | 
 | ||
|  | plot3DTrajectory(result, [], Marginals(graph, result)); | ||
|  | 
 | ||
|  | axis([-0.6 4.8 -1 1]) | ||
|  | axis equal | ||
|  | view(2) |