gtsam/gtsam_unstable/dynamics/Pendulum.h

109 lines
3.8 KiB
C
Raw Normal View History

/**
* @file Pendulum.h
* @brief Three-way factors for the pendulum dynamics as in [Stern06siggraph] for
* (1) explicit Euler method, (2) implicit Euler method, and (3) sympletic Euler method.
* Note that all methods use the same formulas for the factors. They are only different in
* the way we connect variables using those factors in the graph.
* @author Duy-Nguyen Ta
*/
#pragma once
#include <gtsam/base/LieScalar.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
/**
* This class implements the first constraint.
* - For explicit Euler method: q_{k+1} = q_k + dt*v_k
* - For implicit Euler method: q_{k+1} = q_k + dt*v_{k+1}
* - For sympletic Euler method: q_{k+1} = q_k + dt*v_{k+1}
*/
class PendulumFactor1: public NoiseModelFactor3<LieScalar, LieScalar, LieScalar> {
public:
protected:
typedef NoiseModelFactor3<LieScalar, LieScalar, LieScalar> Base;
/** default constructor to allow for serialization */
PendulumFactor1() {}
double dt_;
public:
typedef boost::shared_ptr<PendulumFactor1> shared_ptr;
///Constructor. k1: q_{k+1}, k: q_k, velKey: velocity variable depending on the chosen method, dt: time step
PendulumFactor1(Key k1, Key k, Key velKey, double dt, double mu = 1000.0)
: Base(noiseModel::Constrained::All(LieScalar::Dim(), fabs(mu)), k1, k, velKey), dt_(dt) {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new PendulumFactor1(*this))); }
/** q_k + dt*v - q_k1 = 0, with optional derivatives */
Vector evaluateError(const LieScalar& qk1, const LieScalar& qk, const LieScalar& v,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const {
const size_t p = LieScalar::Dim();
if (H1) *H1 = -eye(p);
if (H2) *H2 = eye(p);
if (H3) *H3 = eye(p)*dt_;
return qk1.localCoordinates(qk.compose(LieScalar(v*dt_)));
}
}; // \PendulumFactor1
/**
* This class implements the second constraint the
* - For explicit Euler method: v_{k+1} = v_k - dt*g/L*sin(q_k)
* - For implicit Euler method: v_{k+1} = v_k - dt*g/L*sin(q_{k+1})
* - For sympletic Euler method: v_{k+1} = v_k - dt*g/L*sin(q_k)
*/
class PendulumFactor2: public NoiseModelFactor3<LieScalar, LieScalar, LieScalar> {
public:
protected:
typedef NoiseModelFactor3<LieScalar, LieScalar, LieScalar> Base;
/** default constructor to allow for serialization */
PendulumFactor2() {}
double dt_;
double g_;
double L_;
public:
typedef boost::shared_ptr<PendulumFactor2 > shared_ptr;
///Constructor. vk1: v_{k+1}, vk: v_k, qkey: q's key depending on the chosen method, dt: time step
PendulumFactor2(Key vk1, Key vk, Key qkey, double dt, double L = 1.0, double g = 9.81, double mu = 1000.0)
: Base(noiseModel::Constrained::All(LieScalar::Dim(), fabs(mu)), vk1, vk, qkey), dt_(dt), g_(g), L_(L) {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new PendulumFactor2(*this))); }
/** v_k - dt*g/L*sin(q) - v_k1 = 0, with optional derivatives */
Vector evaluateError(const LieScalar& vk1, const LieScalar& vk, const LieScalar& q,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const {
const size_t p = LieScalar::Dim();
if (H1) *H1 = -eye(p);
if (H2) *H2 = eye(p);
2013-04-16 10:17:19 +08:00
if (H3) *H3 = -eye(p)*dt_*g_/L_*cos(q.value());
return vk1.localCoordinates(LieScalar(vk - dt_*g_/L_*sin(q)));
}
}; // \PendulumFactor2
}