81 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			81 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
| 
								 | 
							
								% /* ----------------------------------------------------------------------------
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								%  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
							 | 
						||
| 
								 | 
							
								%  * Atlanta, Georgia 30332-0415
							 | 
						||
| 
								 | 
							
								%  * All Rights Reserved
							 | 
						||
| 
								 | 
							
								%  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								%  * See LICENSE for the license information
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								%  * -------------------------------------------------------------------------- */
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								% /**
							 | 
						||
| 
								 | 
							
								%  * @file testKalmanFilter.cpp
							 | 
						||
| 
								 | 
							
								%  * @brief Test simple linear Kalman filter on a moving 2D point
							 | 
						||
| 
								 | 
							
								%  * @date Sep 3, 2011
							 | 
						||
| 
								 | 
							
								%  * @author Stephen Williams
							 | 
						||
| 
								 | 
							
								%  * @author Frank Dellaert
							 | 
						||
| 
								 | 
							
								%  * @author Richard Roberts
							 | 
						||
| 
								 | 
							
								%  */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Create the controls and measurement properties for our example
							 | 
						||
| 
								 | 
							
								F = eye(2,2);
							 | 
						||
| 
								 | 
							
								B = eye(2,2);
							 | 
						||
| 
								 | 
							
								u = [1.0; 0.0];
							 | 
						||
| 
								 | 
							
								modelQ = gtsamSharedDiagonal([0.1;0.1]);
							 | 
						||
| 
								 | 
							
								Q = 0.01*eye(2,2);
							 | 
						||
| 
								 | 
							
								H = eye(2,2);
							 | 
						||
| 
								 | 
							
								z1 = [1.0, 0.0]';
							 | 
						||
| 
								 | 
							
								z2 = [2.0, 0.0]';
							 | 
						||
| 
								 | 
							
								z3 = [3.0, 0.0]';
							 | 
						||
| 
								 | 
							
								modelR = gtsamSharedDiagonal([0.1;0.1]);
							 | 
						||
| 
								 | 
							
								R = 0.01*eye(2,2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Create the set of expected output TestValues
							 | 
						||
| 
								 | 
							
								expected0 = [0.0, 0.0]';
							 | 
						||
| 
								 | 
							
								P00 = 0.01*eye(2,2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								expected1 = [1.0, 0.0]';
							 | 
						||
| 
								 | 
							
								P01 = P00 + Q;
							 | 
						||
| 
								 | 
							
								I11 = inv(P01) + inv(R);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								expected2 = [2.0, 0.0]';
							 | 
						||
| 
								 | 
							
								P12 = inv(I11) + Q;
							 | 
						||
| 
								 | 
							
								I22 = inv(P12) + inv(R);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								expected3 = [3.0, 0.0]';
							 | 
						||
| 
								 | 
							
								P23 = inv(I22) + Q;
							 | 
						||
| 
								 | 
							
								I33 = inv(P23) + inv(R);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Create an KalmanFilter object
							 | 
						||
| 
								 | 
							
								KF = gtsamKalmanFilter(2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Create the Kalman Filter initialization point
							 | 
						||
| 
								 | 
							
								x_initial = [0.0;0.0];
							 | 
						||
| 
								 | 
							
								P_initial = 0.01*eye(2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Create an KF object
							 | 
						||
| 
								 | 
							
								state = KF.init(x_initial, P_initial);
							 | 
						||
| 
								 | 
							
								EQUALITY('expected0,state.mean', expected0,state.mean);
							 | 
						||
| 
								 | 
							
								EQUALITY('expected0,state.mean', P00,state.covariance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Run iteration 1
							 | 
						||
| 
								 | 
							
								state = KF.predict(state,F, B, u, modelQ);
							 | 
						||
| 
								 | 
							
								EQUALITY('expected1,state.mean', expected1,state.mean);
							 | 
						||
| 
								 | 
							
								EQUALITY('P01,state.covariance', P01,state.covariance);
							 | 
						||
| 
								 | 
							
								state = KF.update(state,H,z1,modelR);
							 | 
						||
| 
								 | 
							
								EQUALITY('expected1,state.mean', expected1,state.mean);
							 | 
						||
| 
								 | 
							
								EQUALITY('I11,state.information', I11,state.information);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Run iteration 2
							 | 
						||
| 
								 | 
							
								state = KF.predict(state,F, B, u, modelQ);
							 | 
						||
| 
								 | 
							
								EQUALITY('expected2,state.mean', expected2,state.mean);
							 | 
						||
| 
								 | 
							
								state = KF.update(state,H,z2,modelR);
							 | 
						||
| 
								 | 
							
								EQUALITY('expected2,state.mean', expected2,state.mean);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Run iteration 3
							 | 
						||
| 
								 | 
							
								state = KF.predict(state,F, B, u, modelQ);
							 | 
						||
| 
								 | 
							
								EQUALITY('expected3,state.mean', expected3,state.mean);
							 | 
						||
| 
								 | 
							
								state = KF.update(state,H,z3,modelR);
							 | 
						||
| 
								 | 
							
								EQUALITY('expected3,state.mean', expected3,state.mean);
							 |