| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | #LyX 2.1 created this file. For more info see http://www.lyx.org/ | 
					
						
							|  |  |  | \lyxformat 474 | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \begin_document | 
					
						
							|  |  |  | \begin_header | 
					
						
							|  |  |  | \textclass article | 
					
						
							|  |  |  | \begin_preamble | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | \usepackage{url} | 
					
						
							|  |  |  | \usepackage{hyperref} | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \end_preamble | 
					
						
							|  |  |  | \use_default_options true | 
					
						
							|  |  |  | \maintain_unincluded_children false | 
					
						
							|  |  |  | \language english | 
					
						
							|  |  |  | \language_package default | 
					
						
							|  |  |  | \inputencoding auto | 
					
						
							|  |  |  | \fontencoding global | 
					
						
							|  |  |  | \font_roman default | 
					
						
							|  |  |  | \font_sans default | 
					
						
							|  |  |  | \font_typewriter default | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | \font_math auto | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \font_default_family default | 
					
						
							|  |  |  | \use_non_tex_fonts false | 
					
						
							|  |  |  | \font_sc false | 
					
						
							|  |  |  | \font_osf false | 
					
						
							|  |  |  | \font_sf_scale 100 | 
					
						
							|  |  |  | \font_tt_scale 100 | 
					
						
							|  |  |  | \graphics default | 
					
						
							|  |  |  | \default_output_format default | 
					
						
							|  |  |  | \output_sync 0 | 
					
						
							|  |  |  | \bibtex_command default | 
					
						
							|  |  |  | \index_command default | 
					
						
							|  |  |  | \paperfontsize default | 
					
						
							|  |  |  | \spacing single | 
					
						
							|  |  |  | \use_hyperref false | 
					
						
							|  |  |  | \papersize default | 
					
						
							|  |  |  | \use_geometry false | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | \use_package amsmath 1 | 
					
						
							|  |  |  | \use_package amssymb 2 | 
					
						
							|  |  |  | \use_package cancel 1 | 
					
						
							|  |  |  | \use_package esint 1 | 
					
						
							|  |  |  | \use_package mathdots 1 | 
					
						
							|  |  |  | \use_package mathtools 1 | 
					
						
							|  |  |  | \use_package mhchem 1 | 
					
						
							|  |  |  | \use_package stackrel 0 | 
					
						
							|  |  |  | \use_package stmaryrd 1 | 
					
						
							|  |  |  | \use_package undertilde 1 | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \cite_engine basic | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | \cite_engine_type default | 
					
						
							|  |  |  | \biblio_style plain | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \use_bibtopic false | 
					
						
							|  |  |  | \use_indices false | 
					
						
							|  |  |  | \paperorientation portrait | 
					
						
							|  |  |  | \suppress_date false | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | \justification true | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \use_refstyle 1 | 
					
						
							|  |  |  | \index Index | 
					
						
							|  |  |  | \shortcut idx | 
					
						
							|  |  |  | \color #008000 | 
					
						
							|  |  |  | \end_index | 
					
						
							|  |  |  | \secnumdepth 3 | 
					
						
							|  |  |  | \tocdepth 3 | 
					
						
							|  |  |  | \paragraph_separation indent | 
					
						
							|  |  |  | \paragraph_indentation default | 
					
						
							|  |  |  | \quotes_language english | 
					
						
							|  |  |  | \papercolumns 1 | 
					
						
							|  |  |  | \papersides 1 | 
					
						
							|  |  |  | \paperpagestyle default | 
					
						
							|  |  |  | \tracking_changes false | 
					
						
							|  |  |  | \output_changes false | 
					
						
							|  |  |  | \html_math_output 0 | 
					
						
							|  |  |  | \html_css_as_file 0 | 
					
						
							|  |  |  | \html_be_strict false | 
					
						
							|  |  |  | \end_header | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_body | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\SE}[1]{\mathbb{SE}\left(#1\right)} | 
					
						
							|  |  |  | {\mathbb{SE}\left(#1\right)} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\se}[1]{\mathfrak{se}\left(#1\right)} | 
					
						
							|  |  |  | {\mathfrak{se}\left(#1\right)} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\SO}[1]{\mathbb{SO}\left(#1\right)} | 
					
						
							|  |  |  | {\mathbb{SO}\left(#1\right)} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\so}[1]{\mathfrak{so}\left(#1\right)} | 
					
						
							|  |  |  | {\mathfrak{so}\left(#1\right)} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\R}[1]{\mathbb{R}^{#1}} | 
					
						
							|  |  |  | {\mathbb{R}^{#1}} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\prob}[2]{#1\hspace{0.1em}|\hspace{0.1em}#2} | 
					
						
							|  |  |  | {#1\hspace{0.1em}|\hspace{0.1em}#2} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\norm}[1]{\left\Vert #1\right\Vert } | 
					
						
							|  |  |  | {\left\Vert #1\right\Vert } | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\t}{\mathsf{T}} | 
					
						
							|  |  |  | {\mathsf{T}} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset ERT | 
					
						
							|  |  |  | status open | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Plain Layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \backslash | 
					
						
							|  |  |  | newcommand{ | 
					
						
							|  |  |  | \backslash | 
					
						
							|  |  |  | smallequals}{ | 
					
						
							|  |  |  | \backslash | 
					
						
							|  |  |  | mbox{ | 
					
						
							|  |  |  | \backslash | 
					
						
							|  |  |  | raisebox{0.2ex}{ | 
					
						
							|  |  |  | \backslash | 
					
						
							|  |  |  | fontsize{8}{10} | 
					
						
							|  |  |  | \backslash | 
					
						
							|  |  |  | selectfont $=$}}} | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\smeq}{\smallequals} | 
					
						
							|  |  |  | {{\scriptstyle =}} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\th}[1]{#1^{\mathrm{th}}} | 
					
						
							|  |  |  | {#1^{\mathrm{th}}} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\defeq}{\stackrel{\Delta}{=}} | 
					
						
							|  |  |  | {\stackrel{\Delta}{=}} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\im}{\mathcal{I}} | 
					
						
							|  |  |  | {\mathcal{I}} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\lin}[1]{\overset{{\scriptscriptstyle \circ}}{#1}} | 
					
						
							|  |  |  | {\overset{{\scriptscriptstyle \circ}}{#1}} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset FormulaMacro | 
					
						
							|  |  |  | \newcommand{\lins}[3]{\overset{{\scriptscriptstyle \circ}}{#1}\vphantom{#1}_{#3}^{#2}} | 
					
						
							|  |  |  | {\overset{{\scriptscriptstyle \circ}}{#1}\vphantom{#1}_{#3}^{#2}} | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Section | 
					
						
							|  |  |  | Overview of Trust-region Methods | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | For nice figures, see | 
					
						
							|  |  |  | \begin_inset space ~ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  | LatexCommand cite | 
					
						
							|  |  |  | key "Hauser06lecture" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | . | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | We just deal here with a small subset of trust-region methods, specifically | 
					
						
							|  |  |  |  approximating the cost function as quadratic using Newton's method, and | 
					
						
							|  |  |  |  using the Dogleg method and later to include Steihaug's method. | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | The overall goal of a nonlinear optimization method is to iteratively find | 
					
						
							|  |  |  |  a local minimum of a nonlinear function | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \[ | 
					
						
							|  |  |  | \hat{x}=\arg\min_{x}f\left(x\right) | 
					
						
							|  |  |  | \] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | where  | 
					
						
							|  |  |  | \begin_inset Formula $f\left(x\right)\to\mathbb{R}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is a scalar function. | 
					
						
							|  |  |  |  In GTSAM, the variables  | 
					
						
							|  |  |  | \begin_inset Formula $x$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  could be manifold or Lie group elements, so in this document we only work | 
					
						
							|  |  |  |  with  | 
					
						
							|  |  |  | \emph on | 
					
						
							|  |  |  | increments | 
					
						
							|  |  |  | \emph default | 
					
						
							|  |  |  |   | 
					
						
							|  |  |  | \begin_inset Formula $\delta x\in\R n$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  in the tangent space. | 
					
						
							|  |  |  |  In this document we specifically deal with  | 
					
						
							|  |  |  | \emph on | 
					
						
							|  |  |  | trust-region | 
					
						
							|  |  |  | \emph default | 
					
						
							|  |  |  |  methods, which at every iteration attempt to find a good increment  | 
					
						
							|  |  |  | \begin_inset Formula $\norm{\delta x}\leq\Delta$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  within the  | 
					
						
							|  |  |  | \begin_inset Quotes eld | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | trust radius | 
					
						
							|  |  |  | \begin_inset Quotes erd | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   | 
					
						
							|  |  |  | \begin_inset Formula $\Delta$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | Further, most nonlinear optimization methods, including trust region methods, | 
					
						
							|  |  |  |  deal with an approximate problem at every iteration. | 
					
						
							|  |  |  |  Although there are other choices (such as quasi-Newton), the Newton's method | 
					
						
							|  |  |  |  approximation is, given an estimate  | 
					
						
							|  |  |  | \begin_inset Formula $x^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  of the variables  | 
					
						
							|  |  |  | \begin_inset Formula $x$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ,  | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \begin{equation} | 
					
						
							|  |  |  | f\left(x^{\left(k\right)}\oplus\delta x\right)\approx M^{\left(k\right)}\left(\delta x\right)=f^{\left(k\right)}+g^{\left(k\right)\t}\delta x+\frac{1}{2}\delta x^{\t}G^{\left(k\right)}\delta x\text{,}\label{eq:M-approx} | 
					
						
							|  |  |  | \end{equation} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | where  | 
					
						
							|  |  |  | \begin_inset Formula $f^{\left(k\right)}=f\left(x^{\left(k\right)}\right)$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is the function at  | 
					
						
							|  |  |  | \begin_inset Formula $x^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ,  | 
					
						
							|  |  |  | \begin_inset Formula $g^{\left(x\right)}=\left.\frac{\partial f}{\partial x}\right|_{x^{\left(k\right)}}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is its gradient, and  | 
					
						
							|  |  |  | \begin_inset Formula $G^{\left(k\right)}=\left.\frac{\partial^{2}f}{\partial x^{2}}\right|_{x^{\left(k\right)}}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is its Hessian (or an approximation of the Hessian). | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | Trust-region methods adaptively adjust the trust radius  | 
					
						
							|  |  |  | \begin_inset Formula $\Delta$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  so that within it,  | 
					
						
							|  |  |  | \begin_inset Formula $M$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is a good approximation of  | 
					
						
							|  |  |  | \begin_inset Formula $f$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , and then never step beyond the trust radius in each iteration. | 
					
						
							|  |  |  |  When the true minimum is within the trust region, they converge quadratically | 
					
						
							|  |  |  |  like Newton's method. | 
					
						
							|  |  |  |  At each iteration  | 
					
						
							|  |  |  | \begin_inset Formula $k$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , they solve the  | 
					
						
							|  |  |  | \emph on | 
					
						
							|  |  |  | trust-region subproblem | 
					
						
							|  |  |  | \emph default | 
					
						
							|  |  |  |  to find a proposed update  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  inside the trust radius  | 
					
						
							|  |  |  | \begin_inset Formula $\Delta$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , which decreases the approximate function  | 
					
						
							|  |  |  | \begin_inset Formula $M^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  as much as possible. | 
					
						
							|  |  |  |  The proposed update is only accepted if the true function  | 
					
						
							|  |  |  | \begin_inset Formula $f$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  decreases as well. | 
					
						
							|  |  |  |  If the decrease of  | 
					
						
							|  |  |  | \begin_inset Formula $M$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  matches the decrease of  | 
					
						
							|  |  |  | \begin_inset Formula $f$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  well, the size of the trust region is increased, while if the match is | 
					
						
							|  |  |  |  not close the trust region size is decreased. | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | Minimizing Eq. | 
					
						
							|  |  |  | \begin_inset space ~ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_inset CommandInset ref | 
					
						
							|  |  |  | LatexCommand ref | 
					
						
							|  |  |  | reference "eq:M-approx" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is itself a nonlinear optimization problem, so there are various methods | 
					
						
							|  |  |  |  for approximating it, including Dogleg and Steihaug's method. | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Section | 
					
						
							|  |  |  | Adapting the Trust Region Size | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | As mentioned in the previous section, we increase the trust region size | 
					
						
							|  |  |  |  if the decrease in the model function  | 
					
						
							|  |  |  | \begin_inset Formula $M$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  matches the decrease in the true cost function  | 
					
						
							|  |  |  | \begin_inset Formula $S$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  very closely, and decrease it if they do not match closely. | 
					
						
							|  |  |  |  The closeness of this match is measured with the  | 
					
						
							|  |  |  | \emph on | 
					
						
							|  |  |  | gain ratio | 
					
						
							|  |  |  | \emph default | 
					
						
							|  |  |  | , | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \[ | 
					
						
							|  |  |  | \rho=\frac{f\left(x\right)-f\left(x\oplus\delta x_{d}\right)}{M\left(0\right)-M\left(\delta x_{d}\right)}\text{,} | 
					
						
							|  |  |  | \] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | where  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{d}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is the proposed dogleg step to be introduced next. | 
					
						
							|  |  |  |  The decrease in the model function is always non-negative, and as the decrease | 
					
						
							|  |  |  |  in  | 
					
						
							|  |  |  | \begin_inset Formula $f$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  approaches it,  | 
					
						
							|  |  |  | \begin_inset Formula $\rho$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  approaches  | 
					
						
							|  |  |  | \begin_inset Formula $1$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							|  |  |  |  If the true cost function increases,  | 
					
						
							|  |  |  | \begin_inset Formula $\rho$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  will be negative, and if the true cost function decreases even more than | 
					
						
							|  |  |  |  predicted by  | 
					
						
							|  |  |  | \begin_inset Formula $M$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , then  | 
					
						
							|  |  |  | \begin_inset Formula $\rho$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  will be greater than  | 
					
						
							|  |  |  | \begin_inset Formula $1$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  |  A typical update rule, as per Lec. | 
					
						
							|  |  |  |  7-1.2 of  | 
					
						
							|  |  |  | \begin_inset CommandInset citation | 
					
						
							|  |  |  | LatexCommand cite | 
					
						
							|  |  |  | key "Hauser06lecture" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is: | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \[ | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | \Delta_{k+1}\leftarrow\begin{cases} | 
					
						
							|  |  |  | \Delta_{k}/4 & \rho<0.25\\ | 
					
						
							|  |  |  | \min\left(2\Delta_{k},\Delta_{max}\right)\text{,} & \rho>0.75\\ | 
					
						
							|  |  |  | \Delta_{k} & 0.75>\rho>0.25 | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \end{cases} | 
					
						
							|  |  |  | \] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | where  | 
					
						
							|  |  |  | \begin_inset Formula $\Delta_{k}\triangleq\norm{\delta x_{d}}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							|  |  |  |  Note that the rule is designed to ensure that  | 
					
						
							|  |  |  | \begin_inset Formula $\Delta_{k}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | never exceeds the maximum trust region size  | 
					
						
							|  |  |  | \begin_inset Formula $\Delta_{max}.$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Section | 
					
						
							|  |  |  | Dogleg | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | Dogleg minimizes an approximation of Eq. | 
					
						
							|  |  |  | \begin_inset space ~ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_inset CommandInset ref | 
					
						
							|  |  |  | LatexCommand ref | 
					
						
							|  |  |  | reference "eq:M-approx" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  by considering three possibilities using two points - the minimizer  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{u}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  of  | 
					
						
							|  |  |  | \begin_inset Formula $M^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  along the negative gradient direction  | 
					
						
							|  |  |  | \begin_inset Formula $-g^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , and the overall Newton's method minimizer  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{n}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  of  | 
					
						
							|  |  |  | \begin_inset Formula $M^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							|  |  |  |  When the Hessian  | 
					
						
							|  |  |  | \begin_inset Formula $G^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is positive, the magnitude of  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{u}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is always less than that of  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{n}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , meaning that the Newton's method step is  | 
					
						
							|  |  |  | \begin_inset Quotes eld | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | more adventurous | 
					
						
							|  |  |  | \begin_inset Quotes erd | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							|  |  |  |  How much we step towards the Newton's method point depends on the trust | 
					
						
							|  |  |  |  region size: | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Enumerate | 
					
						
							|  |  |  | If the trust region is smaller than  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{u}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , we step in the negative gradient direction but only by the trust radius. | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Enumerate | 
					
						
							|  |  |  | If the trust region boundary is between  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{u}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  and  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{n}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , we step to the linearly-interpolated point between these two points that | 
					
						
							|  |  |  |  intersects the trust region boundary. | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Enumerate | 
					
						
							|  |  |  | If the trust region boundary is larger than  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{n}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , we step to  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{n}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | To find the intersection of the line between  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{u}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  and  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{n}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  with the trust region boundary, we solve a quadratic roots problem, | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \begin{align*} | 
					
						
							|  |  |  | \Delta & =\norm{\left(1-\tau\right)\delta x_{u}+\tau\delta x_{n}}\\ | 
					
						
							|  |  |  | \Delta^{2} & =\left(1-\tau\right)^{2}\delta x_{u}^{\t}\delta x_{u}+2\tau\left(1-\tau\right)\delta x_{u}^{\t}\delta x_{n}+\tau^{2}\delta x_{n}^{\t}\delta x_{n}\\ | 
					
						
							| 
									
										
										
										
											2019-06-02 03:22:38 +08:00
										 |  |  | 0 & =\delta x_{u}^{\t}\delta x_{u}-2\tau\delta x_{u}^{\t}\delta x_{u}+\tau^{2}\delta x_{u}^{\t}\delta x_{u}+2\tau\delta x_{u}^{\t}\delta x_{n}-2\tau^{2}\delta x_{u}^{\t}\delta x_{n}+\tau^{2}\delta x_{n}^{\t}\delta x_{n}-\Delta^{2}\\ | 
					
						
							|  |  |  | 0 & =\left(\delta x_{u}^{\t}\delta x_{u}-2\delta x_{u}^{\t}\delta x_{n}+\delta x_{n}^{\t}\delta x_{n}\right)\tau^{2}+\left(2\delta x_{u}^{\t}\delta x_{n}-2\delta x_{u}^{\t}\delta x_{u}\right)\tau-\Delta^{2}+\delta x_{u}^{\t}\delta x_{u}\\ | 
					
						
							|  |  |  | \tau & =\frac{-\left(2\delta x_{u}^{\t}\delta x_{n}-2\delta x_{u}^{\t}\delta x_{u}\right)\pm\sqrt{\left(2\delta x_{u}^{\t}\delta x_{n}-2\delta x_{u}^{\t}\delta x_{u}\right)^{2}-4\left(\delta x_{u}^{\t}\delta x_{u}-2\delta x_{u}^{\t}\delta x_{n}+\delta x_{n}^{\t}\delta x_{n}\right)\left(\delta x_{u}^{\t}\delta x_{u}-\Delta^{2}\right)}}{2\left(\delta x_{u}^{\t}\delta x_{u}-\delta x_{u}^{\t}\delta x_{n}+\delta x_{n}^{\t}\delta x_{n}\right)} | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \end{align*} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | From this we take whichever possibility for  | 
					
						
							|  |  |  | \begin_inset Formula $\tau$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  such that  | 
					
						
							|  |  |  | \begin_inset Formula $0<\tau<1$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | To find the steepest-descent minimizer  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{u}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , we perform line search in the gradient direction on the approximate function | 
					
						
							|  |  |  |   | 
					
						
							|  |  |  | \begin_inset Formula $M$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \begin{equation} | 
					
						
							|  |  |  | \delta x_{u}^{\left(k\right)}=\frac{-g^{\left(k\right)\t}g^{\left(k\right)}}{g^{\left(k\right)\t}G^{\left(k\right)}g^{\left(k\right)}}g^{\left(k\right)}\label{eq:steepest-descent-point} | 
					
						
							|  |  |  | \end{equation} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | Thus, mathematically, we can write the dogleg update  | 
					
						
							|  |  |  | \begin_inset Formula $\delta x_{d}^{\left(k\right)}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  as | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \[ | 
					
						
							|  |  |  | \delta x_{d}^{\left(k\right)}=\begin{cases} | 
					
						
							| 
									
										
										
										
											2019-05-31 23:47:40 +08:00
										 |  |  | -\frac{\Delta}{\norm{\delta x_{u}^{\left(k\right)}}}\delta x_{u}^{\left(k\right)}\text{,} & \Delta<\norm{\delta x_{u}^{\left(k\right)}}\\ | 
					
						
							| 
									
										
										
										
											2012-01-09 02:06:45 +08:00
										 |  |  | \left(1-\tau^{\left(k\right)}\right)\delta x_{u}^{\left(k\right)}+\tau^{\left(k\right)}\delta x_{n}^{\left(k\right)}\text{,} & \norm{\delta x_{u}^{\left(k\right)}}<\Delta<\norm{\delta x_{n}^{\left(k\right)}}\\ | 
					
						
							|  |  |  | \delta x_{n}^{\left(k\right)}\text{,} & \norm{\delta x_{n}^{\left(k\right)}}<\Delta | 
					
						
							|  |  |  | \end{cases} | 
					
						
							|  |  |  | \] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Section | 
					
						
							|  |  |  | Working with  | 
					
						
							|  |  |  | \begin_inset Formula $M$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  as a Bayes' Net | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | When we have already eliminated a factor graph into a Bayes' Net, we have | 
					
						
							|  |  |  |  the same quadratic error function  | 
					
						
							|  |  |  | \begin_inset Formula $M^{\left(k\right)}\left(\delta x\right)$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | , but it is in a different form: | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \[ | 
					
						
							|  |  |  | M^{\left(k\right)}\left(\delta x\right)=\frac{1}{2}\norm{Rx-d}^{2}\text{,} | 
					
						
							|  |  |  | \] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | where  | 
					
						
							|  |  |  | \begin_inset Formula $R$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is an upper-triangular matrix (stored as a set of sparse block Gaussian | 
					
						
							|  |  |  |  conditionals in GTSAM), and  | 
					
						
							|  |  |  | \begin_inset Formula $d$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  is the r.h.s. | 
					
						
							|  |  |  |  vector. | 
					
						
							|  |  |  |  The gradient and Hessian of  | 
					
						
							|  |  |  | \begin_inset Formula $M$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  are then | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \begin{align*} | 
					
						
							|  |  |  | g^{\left(k\right)} & =R^{\t}\left(Rx-d\right)\\ | 
					
						
							|  |  |  | G^{\left(k\right)} & =R^{\t}R | 
					
						
							|  |  |  | \end{align*} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | In GTSAM, because the Bayes' Net is not dense, we evaluate Eq. | 
					
						
							|  |  |  | \begin_inset space ~ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_inset CommandInset ref | 
					
						
							|  |  |  | LatexCommand ref | 
					
						
							|  |  |  | reference "eq:steepest-descent-point" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  in an efficient way. | 
					
						
							|  |  |  |  Rewriting the denominator (leaving out the  | 
					
						
							|  |  |  | \begin_inset Formula $\left(k\right)$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  superscript) as | 
					
						
							|  |  |  | \begin_inset Formula  | 
					
						
							|  |  |  | \[ | 
					
						
							|  |  |  | g^{\t}Gg=\sum_{i}\left(R_{i}g\right)^{\t}\left(R_{i}g\right)\text{,} | 
					
						
							|  |  |  | \] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | where  | 
					
						
							|  |  |  | \begin_inset Formula $i$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  indexes over the conditionals in the Bayes' Net (corresponding to blocks | 
					
						
							|  |  |  |  of rows of  | 
					
						
							|  |  |  | \begin_inset Formula $R$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ) exploits the sparse structure of the Bayes' Net, because it is easy to | 
					
						
							|  |  |  |  only include the variables involved in each  | 
					
						
							|  |  |  | \begin_inset Formula $i^{\text{th}}$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  conditional when multiplying them by the corresponding elements of  | 
					
						
							|  |  |  | \begin_inset Formula $g$ | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | . | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin_layout Standard | 
					
						
							|  |  |  | \begin_inset CommandInset bibtex | 
					
						
							|  |  |  | LatexCommand bibtex | 
					
						
							|  |  |  | bibfiles "trustregion" | 
					
						
							|  |  |  | options "plain" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_inset | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_layout | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end_body | 
					
						
							|  |  |  | \end_document |