209 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			209 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
|  | /**
 | ||
|  |  * @file   GaussianBayesNet.cpp | ||
|  |  * @brief  Chordal Bayes Net, the result of eliminating a factor graph | ||
|  |  * @author Frank Dellaert | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <stdarg.h>
 | ||
|  | #include <boost/foreach.hpp>
 | ||
|  | #include <boost/tuple/tuple.hpp>
 | ||
|  | 
 | ||
|  | #include "GaussianBayesNet.h"
 | ||
|  | #include "VectorConfig.h"
 | ||
|  | #include "SymbolMap.h"
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | // Explicitly instantiate so we don't have to include everywhere
 | ||
|  | #include "BayesNet-inl.h"
 | ||
|  | template class BayesNet<GaussianConditional>; | ||
|  | 
 | ||
|  | // trick from some reading group
 | ||
|  | #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL) 
 | ||
|  | #define REVERSE_FOREACH_PAIR( KEY, VAL, COL) BOOST_REVERSE_FOREACH (boost::tie(KEY,VAL),COL)
 | ||
|  | 
 | ||
|  | namespace gtsam { | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianBayesNet scalarGaussian(const Symbol& key, double mu, double sigma) { | ||
|  | 	GaussianBayesNet bn; | ||
|  | 	GaussianConditional::shared_ptr | ||
|  | 		conditional(new GaussianConditional(key, Vector_(1,mu)/sigma, eye(1)/sigma, ones(1))); | ||
|  | 	bn.push_back(conditional); | ||
|  | 	return bn; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianBayesNet simpleGaussian(const Symbol& key, const Vector& mu, double sigma) { | ||
|  | 	GaussianBayesNet bn; | ||
|  | 	size_t n = mu.size(); | ||
|  | 	GaussianConditional::shared_ptr | ||
|  | 		conditional(new GaussianConditional(key, mu/sigma, eye(n)/sigma, ones(n))); | ||
|  | 	bn.push_back(conditional); | ||
|  | 	return bn; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | void push_front(GaussianBayesNet& bn, const Symbol& key, Vector d, Matrix R, | ||
|  | 		const Symbol& name1, Matrix S, Vector sigmas) { | ||
|  | 	GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, sigmas)); | ||
|  | 	bn.push_front(cg); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | void push_front(GaussianBayesNet& bn, const Symbol& key, Vector d, Matrix R, | ||
|  | 		const Symbol& name1, Matrix S, const Symbol& name2, Matrix T, Vector sigmas) { | ||
|  | 	GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, name2, T, sigmas)); | ||
|  | 	bn.push_front(cg); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | VectorConfig optimize(const GaussianBayesNet& bn) | ||
|  | { | ||
|  |   return *optimize_(bn); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | boost::shared_ptr<VectorConfig> optimize_(const GaussianBayesNet& bn) | ||
|  | { | ||
|  | 	boost::shared_ptr<VectorConfig> result(new VectorConfig); | ||
|  | 
 | ||
|  |   /** solve each node in turn in topological sort order (parents first)*/ | ||
|  | 	BOOST_REVERSE_FOREACH(GaussianConditional::shared_ptr cg, bn) { | ||
|  |     Vector x = cg->solve(*result); // Solve for that variable
 | ||
|  |     result->insert(cg->key(),x);   // store result in partial solution
 | ||
|  |   } | ||
|  |   return result; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | VectorConfig backSubstitute(const GaussianBayesNet& bn, const VectorConfig& y) { | ||
|  | 	VectorConfig x = y; | ||
|  | 	backSubstituteInPlace(bn,x); | ||
|  | 	return x; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | // (R*x)./sigmas = y by solving x=inv(R)*(y.*sigmas)
 | ||
|  | void backSubstituteInPlace(const GaussianBayesNet& bn, VectorConfig& y) { | ||
|  | 	VectorConfig& x = y; | ||
|  | 	/** solve each node in turn in topological sort order (parents first)*/ | ||
|  | 	BOOST_REVERSE_FOREACH(GaussianConditional::shared_ptr cg, bn) { | ||
|  | 		// i^th part of R*x=y, x=inv(R)*y
 | ||
|  | 		// (Rii*xi + R_i*x(i+1:))./si = yi <-> xi = inv(Rii)*(yi.*si - R_i*x(i+1:))
 | ||
|  | 		const Symbol& i = cg->key(); | ||
|  | 		Vector zi = emul(y[i],cg->get_sigmas()); | ||
|  | 		GaussianConditional::const_iterator it; | ||
|  | 		for (it = cg->parentsBegin(); it!= cg->parentsEnd(); it++) { | ||
|  | 			const Symbol& j = it->first; | ||
|  | 			const Matrix& Rij = it->second; | ||
|  | 			multiplyAdd(-1.0,Rij,x[j],zi); | ||
|  | 		} | ||
|  | 		x[i] = gtsam::backSubstituteUpper(cg->get_R(), zi); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | // gy=inv(L)*gx by solving L*gy=gx.
 | ||
|  | // gy=inv(R'*inv(Sigma))*gx
 | ||
|  | // gz'*R'=gx', gy = gz.*sigmas
 | ||
|  | VectorConfig backSubstituteTranspose(const GaussianBayesNet& bn, | ||
|  | 		const VectorConfig& gx) { | ||
|  | 
 | ||
|  | 	// Initialize gy from gx
 | ||
|  | 	// TODO: used to insert zeros if gx did not have an entry for a variable in bn
 | ||
|  | 	VectorConfig gy = gx; | ||
|  | 
 | ||
|  | 	// we loop from first-eliminated to last-eliminated
 | ||
|  | 	// i^th part of L*gy=gx is done block-column by block-column of L
 | ||
|  | 	BOOST_FOREACH(GaussianConditional::shared_ptr cg, bn) { | ||
|  | 		const Symbol& j = cg->key(); | ||
|  | 		gy[j] = gtsam::backSubstituteUpper(gy[j],cg->get_R()); | ||
|  | 		GaussianConditional::const_iterator it; | ||
|  | 		for (it = cg->parentsBegin(); it!= cg->parentsEnd(); it++) { | ||
|  | 			const Symbol& i = it->first; | ||
|  | 			const Matrix& Rij = it->second; | ||
|  | 			transposeMultiplyAdd(-1.0,Rij,gy[j],gy[i]); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Scale gy
 | ||
|  | 	BOOST_FOREACH(GaussianConditional::shared_ptr cg, bn) { | ||
|  | 		const Symbol& j = cg->key(); | ||
|  | 		gy[j] = emul(gy[j],cg->get_sigmas()); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return gy; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */   | ||
|  | pair<Matrix,Vector> matrix(const GaussianBayesNet& bn)  { | ||
|  | 
 | ||
|  |   // add the dimensions of all variables to get matrix dimension
 | ||
|  |   // and at the same time create a mapping from keys to indices
 | ||
|  |   size_t N=0; SymbolMap<size_t> mapping; | ||
|  |   BOOST_FOREACH(GaussianConditional::shared_ptr cg,bn) { | ||
|  |     mapping.insert(make_pair(cg->key(),N)); | ||
|  |     N += cg->dim(); | ||
|  |   } | ||
|  | 
 | ||
|  |   // create matrix and copy in values
 | ||
|  |   Matrix R = zeros(N,N); | ||
|  |   Vector d(N); | ||
|  |   Symbol key; size_t I; | ||
|  |   FOREACH_PAIR(key,I,mapping) { | ||
|  |     // find corresponding conditional
 | ||
|  |     GaussianConditional::shared_ptr cg = bn[key]; | ||
|  |      | ||
|  |     // get sigmas
 | ||
|  |     Vector sigmas = cg->get_sigmas(); | ||
|  | 
 | ||
|  |     // get RHS and copy to d
 | ||
|  |     const Vector& d_ = cg->get_d(); | ||
|  |     const size_t n = d_.size(); | ||
|  |     for (size_t i=0;i<n;i++) | ||
|  |       d(I+i) = d_(i)/sigmas(i); | ||
|  | 
 | ||
|  |     // get leading R matrix and copy to R
 | ||
|  |     const Matrix& R_ = cg->get_R(); | ||
|  |     for (size_t i=0;i<n;i++) | ||
|  |       for(size_t j=0;j<n;j++) | ||
|  |       	R(I+i,I+j) = R_(i,j)/sigmas(i); | ||
|  | 
 | ||
|  |     // loop over S matrices and copy them into R
 | ||
|  |     GaussianConditional::const_iterator keyS = cg->parentsBegin(); | ||
|  |     for (; keyS!=cg->parentsEnd(); keyS++) { | ||
|  |       Matrix S = keyS->second;                   // get S matrix      
 | ||
|  |       const size_t m = S.size1(), n = S.size2(); // find S size
 | ||
|  |       const size_t J = mapping[keyS->first];     // find column index
 | ||
|  |       for (size_t i=0;i<m;i++) | ||
|  |       	for(size_t j=0;j<n;j++) | ||
|  |       		R(I+i,J+j) = S(i,j)/sigmas(i); | ||
|  |     } // keyS
 | ||
|  | 
 | ||
|  |   } // keyI
 | ||
|  | 
 | ||
|  |   return make_pair(R,d); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | VectorConfig rhs(const GaussianBayesNet& bn) { | ||
|  | 	VectorConfig result; | ||
|  |   BOOST_FOREACH(GaussianConditional::shared_ptr cg,bn) { | ||
|  |   	const Symbol& key = cg->key(); | ||
|  |   	// get sigmas
 | ||
|  |     Vector sigmas = cg->get_sigmas(); | ||
|  | 
 | ||
|  |     // get RHS and copy to d
 | ||
|  |     const Vector& d = cg->get_d(); | ||
|  |     result.insert(key,ediv_(d,sigmas)); // TODO ediv_? I think not
 | ||
|  |   } | ||
|  | 
 | ||
|  |   return result; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | 
 | ||
|  | } // namespace gtsam
 |