| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * @file    numericalDerivative.h | 
					
						
							|  |  |  |  * @brief   Some functions to compute numerical derivatives | 
					
						
							|  |  |  |  * @author  Frank Dellaert | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // \callgraph
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-22 03:18:23 +08:00
										 |  |  | #include <boost/function.hpp>
 | 
					
						
							|  |  |  | #include <boost/bind.hpp>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-14 13:58:58 +08:00
										 |  |  | #include "Lie.h"
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | #include "Matrix.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-08 08:40:17 +08:00
										 |  |  | //#define LINEARIZE_AT_IDENTITY
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-22 03:18:23 +08:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	 * Note that all of these functions have two versions, a boost.function version and a | 
					
						
							|  |  |  | 	 * standard C++ function pointer version.  This allows reformulating the arguments of | 
					
						
							|  |  |  | 	 * a function to fit the correct structure, which is useful for situations like | 
					
						
							|  |  |  | 	 * member functions and functions with arguments not involved in the derivative: | 
					
						
							|  |  |  | 	 * | 
					
						
							|  |  |  | 	 * Usage of the boost bind version to rearrange arguments: | 
					
						
							|  |  |  | 	 *   for a function with one relevant param and an optional derivative: | 
					
						
							|  |  |  | 	 *   	Foo bar(const Obj& a, boost::optional<Matrix&> H1) | 
					
						
							|  |  |  | 	 *   Use boost.bind to restructure: | 
					
						
							|  |  |  | 	 *   	boost::bind(bar, _1, boost::none) | 
					
						
							|  |  |  | 	 *   This syntax will fix the optional argument to boost::none, while using the first argument provided | 
					
						
							|  |  |  | 	 * | 
					
						
							|  |  |  | 	 * For member functions, such as below, with an instantiated copy instanceOfSomeClass | 
					
						
							|  |  |  | 	 * 		Foo SomeClass::bar(const Obj& a) | 
					
						
							|  |  |  | 	 * Use boost bind as follows to create a function pointer that uses the member function: | 
					
						
							|  |  |  | 	 * 	    boost::bind(&SomeClass::bar, ref(instanceOfSomeClass), _1) | 
					
						
							|  |  |  | 	 * | 
					
						
							|  |  |  | 	 * For additional details, see the documentation: | 
					
						
							|  |  |  | 	 * 		http://www.boost.org/doc/libs/1_43_0/libs/bind/bind.html
 | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/**
 | 
					
						
							|  |  |  | 	 * Numerically compute gradient of scalar function | 
					
						
							|  |  |  | 	 * Class X is the input argument | 
					
						
							|  |  |  | 	 * The class X needs to have dim, expmap, logmap | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	template<class X> | 
					
						
							|  |  |  | 	Vector numericalGradient(boost::function<double(const X&)> h, const X& x, double delta=1e-5) { | 
					
						
							|  |  |  | 		double factor = 1.0/(2.0*delta); | 
					
						
							|  |  |  | 		const size_t n = x.dim(); | 
					
						
							|  |  |  | 		Vector d(n,0.0), g(n,0.0); | 
					
						
							|  |  |  | 		for (size_t j=0;j<n;j++) { | 
					
						
							|  |  |  | 			d(j) +=   delta; double hxplus = h(expmap(x,d)); | 
					
						
							|  |  |  | 			d(j) -= 2*delta; double hxmin  = h(expmap(x,d)); | 
					
						
							|  |  |  | 			d(j) +=   delta; g(j) = (hxplus-hxmin)*factor; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return g; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	template<class X> | 
					
						
							|  |  |  | 	Vector numericalGradient(double (*h)(const X&), const X& x, double delta=1e-5) { | 
					
						
							|  |  |  | 		return numericalGradient<X>(boost::bind(h, _1), x, delta); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/**
 | 
					
						
							|  |  |  | 	 * Compute numerical derivative in argument 1 of unary function | 
					
						
							|  |  |  | 	 * @param h unary function yielding m-vector | 
					
						
							|  |  |  | 	 * @param x n-dimensional value at which to evaluate h | 
					
						
							|  |  |  | 	 * @param delta increment for numerical derivative | 
					
						
							|  |  |  | 	 * Class Y is the output argument | 
					
						
							|  |  |  | 	 * Class X is the input argument | 
					
						
							|  |  |  | 	 * @return m*n Jacobian computed via central differencing | 
					
						
							|  |  |  | 	 * Both classes X,Y need dim, expmap, logmap | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	template<class Y, class X> | 
					
						
							|  |  |  | 	Matrix numericalDerivative11(boost::function<Y(const X&)> h, const X& x, double delta=1e-5) { | 
					
						
							|  |  |  | 		Y hx = h(x); | 
					
						
							|  |  |  | 		double factor = 1.0/(2.0*delta); | 
					
						
							|  |  |  | 		const size_t m = dim(hx), n = dim(x); | 
					
						
							|  |  |  | 		Vector d(n,0.0); | 
					
						
							|  |  |  | 		Matrix H = zeros(m,n); | 
					
						
							|  |  |  | 		for (size_t j=0;j<n;j++) { | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector hxplus = logmap(hx, h(expmap(x,d))); | 
					
						
							|  |  |  | 			d(j) -= 2*delta; Vector hxmin  = logmap(hx, h(expmap(x,d))); | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor; | 
					
						
							|  |  |  | 			for (size_t i=0;i<m;i++) H(i,j) = dh(i); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return H; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	template<class Y, class X> | 
					
						
							|  |  |  | 	Matrix numericalDerivative11(Y (*h)(const X&), const X& x, double delta=1e-5) { | 
					
						
							|  |  |  | 		return numericalDerivative11<Y,X>(boost::bind(h, _1), x, delta); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/**
 | 
					
						
							|  |  |  | 	 * Compute numerical derivative in argument 1 of binary function | 
					
						
							|  |  |  | 	 * @param h binary function yielding m-vector | 
					
						
							|  |  |  | 	 * @param x1 n-dimensional first argument value | 
					
						
							|  |  |  | 	 * @param x2 second argument value | 
					
						
							|  |  |  | 	 * @param delta increment for numerical derivative | 
					
						
							|  |  |  | 	 * @return m*n Jacobian computed via central differencing | 
					
						
							|  |  |  | 	 * All classes Y,X1,X2 need dim, expmap, logmap | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2> | 
					
						
							|  |  |  | 	Matrix numericalDerivative21(boost::function<Y(const X1&, const X2&)> h, | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, double delta=1e-5) { | 
					
						
							|  |  |  | 		Y hx = h(x1,x2); | 
					
						
							|  |  |  | 		double factor = 1.0/(2.0*delta); | 
					
						
							|  |  |  | 		const size_t m = dim(hx), n = dim(x1); | 
					
						
							|  |  |  | 		Vector d(n,0.0); | 
					
						
							|  |  |  | 		Matrix H = zeros(m,n); | 
					
						
							|  |  |  | 		for (size_t j=0;j<n;j++) { | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector hxplus = logmap(hx, h(expmap(x1,d),x2)); | 
					
						
							|  |  |  | 			d(j) -= 2*delta; Vector hxmin  = logmap(hx, h(expmap(x1,d),x2)); | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor; | 
					
						
							|  |  |  | 			for (size_t i=0;i<m;i++) H(i,j) = dh(i); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return H; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2> | 
					
						
							|  |  |  | 	Matrix numericalDerivative21(Y (*h)(const X1&, const X2&), | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, double delta=1e-5) { | 
					
						
							|  |  |  | 		return numericalDerivative21<Y,X1,X2>(boost::bind(h, _1, _2), x1, x2, delta); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/**
 | 
					
						
							|  |  |  | 	 * Compute numerical derivative in argument 2 of binary function | 
					
						
							|  |  |  | 	 * @param h binary function yielding m-vector | 
					
						
							|  |  |  | 	 * @param x1 first argument value | 
					
						
							|  |  |  | 	 * @param x2 n-dimensional second argument value | 
					
						
							|  |  |  | 	 * @param delta increment for numerical derivative | 
					
						
							|  |  |  | 	 * @return m*n Jacobian computed via central differencing | 
					
						
							|  |  |  | 	 * All classes Y,X1,X2 need dim, expmap, logmap | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2> | 
					
						
							|  |  |  | 	Matrix numericalDerivative22 | 
					
						
							|  |  |  | 	(boost::function<Y(const X1&, const X2&)> h, | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, double delta=1e-5) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		Y hx = h(x1,x2); | 
					
						
							|  |  |  | 		double factor = 1.0/(2.0*delta); | 
					
						
							|  |  |  | 		const size_t m = dim(hx), n = dim(x2); | 
					
						
							|  |  |  | 		Vector d(n,0.0); | 
					
						
							|  |  |  | 		Matrix H = zeros(m,n); | 
					
						
							|  |  |  | 		for (size_t j=0;j<n;j++) { | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector hxplus = logmap(hx, h(x1,expmap(x2,d))); | 
					
						
							|  |  |  | 			d(j) -= 2*delta; Vector hxmin  = logmap(hx, h(x1,expmap(x2,d))); | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor; | 
					
						
							|  |  |  | 			for (size_t i=0;i<m;i++) H(i,j) = dh(i); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return H; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2> | 
					
						
							|  |  |  | 	Matrix numericalDerivative22 | 
					
						
							|  |  |  | 	(Y (*h)(const X1&, const X2&), | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, double delta=1e-5) { | 
					
						
							|  |  |  | 		return numericalDerivative22<Y,X1,X2>(boost::bind(h, _1, _2), x1, x2, delta); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/**
 | 
					
						
							|  |  |  | 	 * Compute numerical derivative in argument 1 of ternary function | 
					
						
							|  |  |  | 	 * @param h ternary function yielding m-vector | 
					
						
							|  |  |  | 	 * @param x1 n-dimensional first argument value | 
					
						
							|  |  |  | 	 * @param x2 second argument value | 
					
						
							|  |  |  | 	 * @param x3 third argument value | 
					
						
							|  |  |  | 	 * @param delta increment for numerical derivative | 
					
						
							|  |  |  | 	 * @return m*n Jacobian computed via central differencing | 
					
						
							|  |  |  | 	 * All classes Y,X1,X2,X3 need dim, expmap, logmap | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2, class X3> | 
					
						
							|  |  |  | 	Matrix numericalDerivative31 | 
					
						
							|  |  |  | 	(boost::function<Y(const X1&, const X2&, const X3&)> h, | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		Y hx = h(x1,x2,x3); | 
					
						
							|  |  |  | 		double factor = 1.0/(2.0*delta); | 
					
						
							|  |  |  | 		const size_t m = dim(hx), n = dim(x1); | 
					
						
							|  |  |  | 		Vector d(n,0.0); | 
					
						
							|  |  |  | 		Matrix H = zeros(m,n); | 
					
						
							|  |  |  | 		for (size_t j=0;j<n;j++) { | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector hxplus = logmap(hx, h(expmap(x1,d),x2,x3)); | 
					
						
							|  |  |  | 			d(j) -= 2*delta; Vector hxmin  = logmap(hx, h(expmap(x1,d),x2,x3)); | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor; | 
					
						
							|  |  |  | 			for (size_t i=0;i<m;i++) H(i,j) = dh(i); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return H; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2, class X3> | 
					
						
							|  |  |  | 	Matrix numericalDerivative31 | 
					
						
							|  |  |  | 	(Y (*h)(const X1&, const X2&, const X3&), | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) { | 
					
						
							|  |  |  | 		return numericalDerivative31<Y,X1,X2, X3>(boost::bind(h, _1, _2, _3), x1, x2, x3, delta); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// arg 2
 | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2, class X3> | 
					
						
							|  |  |  | 	Matrix numericalDerivative32 | 
					
						
							|  |  |  | 	(boost::function<Y(const X1&, const X2&, const X3&)> h, | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		Y hx = h(x1,x2,x3); | 
					
						
							|  |  |  | 		double factor = 1.0/(2.0*delta); | 
					
						
							|  |  |  | 		const size_t m = dim(hx), n = dim(x2); | 
					
						
							|  |  |  | 		Vector d(n,0.0); | 
					
						
							|  |  |  | 		Matrix H = zeros(m,n); | 
					
						
							|  |  |  | 		for (size_t j=0;j<n;j++) { | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector hxplus = logmap(hx, h(x1, expmap(x2,d),x3)); | 
					
						
							|  |  |  | 			d(j) -= 2*delta; Vector hxmin  = logmap(hx, h(x1, expmap(x2,d),x3)); | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor; | 
					
						
							|  |  |  | 			for (size_t i=0;i<m;i++) H(i,j) = dh(i); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return H; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2, class X3> | 
					
						
							|  |  |  | 	Matrix numericalDerivative32 | 
					
						
							|  |  |  | 	(Y (*h)(const X1&, const X2&, const X3&), | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) { | 
					
						
							|  |  |  | 		return numericalDerivative32<Y,X1,X2, X3>(boost::bind(h, _1, _2, _3), x1, x2, x3, delta); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// arg 3
 | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2, class X3> | 
					
						
							|  |  |  | 	Matrix numericalDerivative33 | 
					
						
							|  |  |  | 	(boost::function<Y(const X1&, const X2&, const X3&)> h, | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		Y hx = h(x1,x2,x3); | 
					
						
							|  |  |  | 		double factor = 1.0/(2.0*delta); | 
					
						
							|  |  |  | 		const size_t m = dim(hx), n = dim(x3); | 
					
						
							|  |  |  | 		Vector d(n,0.0); | 
					
						
							|  |  |  | 		Matrix H = zeros(m,n); | 
					
						
							|  |  |  | 		for (size_t j=0;j<n;j++) { | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector hxplus = logmap(hx, h(x1, x2, expmap(x3,d))); | 
					
						
							|  |  |  | 			d(j) -= 2*delta; Vector hxmin  = logmap(hx, h(x1, x2, expmap(x3,d))); | 
					
						
							|  |  |  | 			d(j) +=   delta; Vector dh = (hxplus-hxmin)*factor; | 
					
						
							|  |  |  | 			for (size_t i=0;i<m;i++) H(i,j) = dh(i); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return H; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	template<class Y, class X1, class X2, class X3> | 
					
						
							|  |  |  | 	Matrix numericalDerivative33 | 
					
						
							|  |  |  | 	(Y (*h)(const X1&, const X2&, const X3&), | 
					
						
							|  |  |  | 			const X1& x1, const X2& x2, const X3& x3, double delta=1e-5) { | 
					
						
							|  |  |  | 		return numericalDerivative33<Y,X1,X2, X3>(boost::bind(h, _1, _2, _3), x1, x2, x3, delta); | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | } |