540 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			540 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
|  | /**
 | ||
|  |  * @file    GaussianFactor.cpp | ||
|  |  * @brief   Linear Factor....A Gaussian | ||
|  |  * @brief   linearFactor | ||
|  |  * @author  Christian Potthast | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <boost/foreach.hpp>
 | ||
|  | #include <boost/assign/list_inserter.hpp> // for 'insert()'
 | ||
|  | #include <boost/assign/std/list.hpp> // for operator += in Ordering
 | ||
|  | 
 | ||
|  | #include "Matrix.h"
 | ||
|  | #include "Ordering.h"
 | ||
|  | #include "GaussianConditional.h"
 | ||
|  | #include "GaussianFactor.h"
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace boost::assign; | ||
|  | namespace ublas = boost::numeric::ublas; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | typedef pair<Symbol,Matrix> NamedMatrix; | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianFactor::GaussianFactor(const Vector& b_in) : | ||
|  | 	b_(b_in) { | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianFactor::GaussianFactor(const Symbol& key1, const Matrix& A1, | ||
|  | 		const Vector& b, const SharedDiagonal& model) : | ||
|  | 	model_(model),b_(b) { | ||
|  | 	As_[key1] = A1; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianFactor::GaussianFactor(const Symbol& key1, const Matrix& A1, | ||
|  | 		const Symbol& key2, const Matrix& A2, | ||
|  | 		const Vector& b, const SharedDiagonal& model) : | ||
|  | 	model_(model), b_(b)  { | ||
|  | 	As_[key1] = A1; | ||
|  | 	As_[key2] = A2; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianFactor::GaussianFactor(const Symbol& key1, const Matrix& A1, | ||
|  | 		const Symbol& key2, const Matrix& A2, | ||
|  | 		const Symbol& key3, const Matrix& A3, | ||
|  | 		const Vector& b, const SharedDiagonal& model) : | ||
|  |         model_(model),b_(b)  { | ||
|  | 	As_[key1] = A1; | ||
|  | 	As_[key2] = A2; | ||
|  | 	As_[key3] = A3; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianFactor::GaussianFactor(const std::vector<std::pair<Symbol, Matrix> > &terms, | ||
|  |     const Vector &b, const SharedDiagonal& model) : | ||
|  | 	model_(model), b_(b)  { | ||
|  | 	BOOST_FOREACH(const NamedMatrix& pair, terms) | ||
|  |     As_.insert(pair); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianFactor::GaussianFactor(const std::list<std::pair<Symbol, Matrix> > &terms, | ||
|  |     const Vector &b, const SharedDiagonal& model) : | ||
|  | 	model_(model), b_(b)  { | ||
|  | 	BOOST_FOREACH(const NamedMatrix& pair, terms) | ||
|  | 		As_.insert(pair); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianFactor::GaussianFactor(const boost::shared_ptr<GaussianConditional>& cg) : | ||
|  | 	b_(cg->get_d()) { | ||
|  | 	As_.insert(NamedMatrix(cg->key(), cg->get_R())); | ||
|  | 	SymbolMap<Matrix>::const_iterator it = cg->parentsBegin(); | ||
|  | 	for (; it != cg->parentsEnd(); it++) | ||
|  | 		As_.insert(*it); | ||
|  | 	// set sigmas from precisions
 | ||
|  | 	model_ = noiseModel::Diagonal::Sigmas(cg->get_sigmas(), true); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | GaussianFactor::GaussianFactor(const vector<shared_ptr> & factors) | ||
|  | { | ||
|  | 	bool verbose = false; | ||
|  | 	if (verbose) cout << "GaussianFactor::GaussianFactor (factors)" << endl; | ||
|  | 
 | ||
|  | 	// Create RHS and sigmas of right size by adding together row counts
 | ||
|  |   size_t m = 0; | ||
|  |   BOOST_FOREACH(const shared_ptr& factor, factors) m += factor->numberOfRows(); | ||
|  |   b_ = Vector(m); | ||
|  |   Vector sigmas(m); | ||
|  | 
 | ||
|  |   size_t pos = 0; // save last position inserted into the new rhs vector
 | ||
|  | 
 | ||
|  |   // iterate over all factors
 | ||
|  |   bool constrained = false; | ||
|  |   BOOST_FOREACH(const shared_ptr& factor, factors){ | ||
|  |   	if (verbose) factor->print(); | ||
|  |     // number of rows for factor f
 | ||
|  |     const size_t mf = factor->numberOfRows(); | ||
|  | 
 | ||
|  |     // copy the rhs vector from factor to b
 | ||
|  |     const Vector bf = factor->get_b(); | ||
|  |     for (size_t i=0; i<mf; i++) b_(pos+i) = bf(i); | ||
|  | 
 | ||
|  |     // copy the model_
 | ||
|  |     for (size_t i=0; i<mf; i++) sigmas(pos+i) = factor->model_->sigma(i); | ||
|  | 
 | ||
|  |     // update the matrices
 | ||
|  |     append_factor(factor,m,pos); | ||
|  | 
 | ||
|  |     // check if there are constraints
 | ||
|  |     if (verbose) factor->model_->print("Checking for zeros"); | ||
|  |     if (!constrained && factor->model_->isConstrained()) { | ||
|  |     	constrained = true; | ||
|  |     	if (verbose) cout << "Found a constraint!" << endl; | ||
|  |     } | ||
|  | 
 | ||
|  |     pos += mf; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (verbose) cout << "GaussianFactor::GaussianFactor done" << endl; | ||
|  | 
 | ||
|  |   if (constrained) { | ||
|  | 	  model_ = noiseModel::Constrained::MixedSigmas(sigmas); | ||
|  | 	  if (verbose) model_->print("Just created Constraint ^"); | ||
|  |   } else { | ||
|  | 	  model_ = noiseModel::Diagonal::Sigmas(sigmas); | ||
|  | 	  if (verbose) model_->print("Just created Diagonal"); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | void GaussianFactor::print(const string& s) const { | ||
|  |   cout << s << endl; | ||
|  |   if (empty()) cout << " empty" << endl;  | ||
|  |   else { | ||
|  |   	BOOST_FOREACH(const NamedMatrix& jA, As_) | ||
|  |   		gtsam::print(jA.second, "A["+(string)jA.first+"]=\n"); | ||
|  |     gtsam::print(b_,"b="); | ||
|  |     model_->print("model"); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | size_t GaussianFactor::getDim(const Symbol& key) const { | ||
|  | 	const_iterator it = As_.find(key); | ||
|  | 	if (it != As_.end()) | ||
|  | 		return it->second.size2(); | ||
|  | 	else | ||
|  | 		return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | // Check if two linear factors are equal
 | ||
|  | bool GaussianFactor::equals(const Factor<VectorConfig>& f, double tol) const { | ||
|  |      | ||
|  |   const GaussianFactor* lf = dynamic_cast<const GaussianFactor*>(&f); | ||
|  |   if (lf == NULL) return false; | ||
|  | 
 | ||
|  |   if (empty()) return (lf->empty()); | ||
|  | 
 | ||
|  |   const_iterator it1 = As_.begin(), it2 = lf->As_.begin(); | ||
|  |   if(As_.size() != lf->As_.size()) return false; | ||
|  | 
 | ||
|  |   // check whether each row is up to a sign
 | ||
|  |   for (size_t i=0; i<b_.size(); i++) { | ||
|  |   	list<Vector> row1; | ||
|  |   	list<Vector> row2; | ||
|  |   	row1.push_back(Vector_(1,     b_(i))); | ||
|  |   	row2.push_back(Vector_(1, lf->b_(i))); | ||
|  | 
 | ||
|  |   	for(; it1 != As_.end(); it1++, it2++) { | ||
|  |   		const Symbol& j1 = it1->first, j2 = it2->first; | ||
|  |   		const Matrix A1 = it1->second, A2 = it2->second; | ||
|  |   		if (j1 != j2) return false; | ||
|  | 
 | ||
|  |   		row1.push_back(row_(A1,i)); | ||
|  |   		row2.push_back(row_(A2,i)); | ||
|  |   	} | ||
|  | 
 | ||
|  |   	Vector r1 = concatVectors(row1); | ||
|  |   	Vector r2 = concatVectors(row2); | ||
|  |   	if( !::equal_with_abs_tol(r1,      r2, tol) && | ||
|  |   			!::equal_with_abs_tol(r1*(-1), r2, tol)) { | ||
|  |   		return false; | ||
|  |   	} | ||
|  |   } | ||
|  | 
 | ||
|  |   return model_->equals(*(lf->model_),tol); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | Vector GaussianFactor::unweighted_error(const VectorConfig& c) const { | ||
|  |   Vector e = -b_; | ||
|  |   if (empty()) return e; | ||
|  | 	BOOST_FOREACH(const NamedMatrix& jA, As_) | ||
|  |     e += (jA.second * c[jA.first]); | ||
|  |   return e; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | Vector GaussianFactor::error_vector(const VectorConfig& c) const { | ||
|  | 	if (empty()) return model_->whiten(-b_); | ||
|  | 	return model_->whiten(unweighted_error(c)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | double GaussianFactor::error(const VectorConfig& c) const { | ||
|  |   if (empty()) return 0; | ||
|  |   Vector weighted = error_vector(c); // rtodo: copying vector here?
 | ||
|  |   return 0.5 * inner_prod(weighted,weighted); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | list<Symbol> GaussianFactor::keys() const { | ||
|  | 	list<Symbol> result; | ||
|  | 	typedef pair<Symbol,Matrix> NamedMatrix; | ||
|  | 	BOOST_FOREACH(const NamedMatrix& jA, As_) | ||
|  |     result.push_back(jA.first); | ||
|  |   return result; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | Dimensions GaussianFactor::dimensions() const { | ||
|  |   Dimensions result; | ||
|  |   BOOST_FOREACH(const NamedMatrix& jA, As_) | ||
|  | 		result.insert(std::pair<Symbol,int>(jA.first,jA.second.size2())); | ||
|  |   return result; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | void GaussianFactor::tally_separator(const Symbol& key, set<Symbol>& separator) const { | ||
|  |   if(involves(key)) { | ||
|  |     BOOST_FOREACH(const NamedMatrix& jA, As_) | ||
|  |       if(jA.first != key) separator.insert(jA.first); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | Vector GaussianFactor::operator*(const VectorConfig& x) const { | ||
|  | 	Vector Ax = zero(b_.size()); | ||
|  |   if (empty()) return Ax; | ||
|  | 
 | ||
|  |   // Just iterate over all A matrices and multiply in correct config part
 | ||
|  |   BOOST_FOREACH(const NamedMatrix& jA, As_) | ||
|  |     Ax += (jA.second * x[jA.first]); | ||
|  | 
 | ||
|  |   return model_->whiten(Ax); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | VectorConfig GaussianFactor::operator^(const Vector& e) const { | ||
|  |   Vector E = model_->whiten(e); | ||
|  | 	VectorConfig x; | ||
|  |   // Just iterate over all A matrices and insert Ai^e into VectorConfig
 | ||
|  |   BOOST_FOREACH(const NamedMatrix& jA, As_) | ||
|  |     x.insert(jA.first,jA.second^E); | ||
|  | 	return x; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | void GaussianFactor::transposeMultiplyAdd(double alpha, const Vector& e, | ||
|  | 		VectorConfig& x) const { | ||
|  | 	Vector E = alpha * model_->whiten(e); | ||
|  | 	// Just iterate over all A matrices and insert Ai^e into VectorConfig
 | ||
|  | 	BOOST_FOREACH(const NamedMatrix& jA, As_) | ||
|  | 		gtsam::transposeMultiplyAdd(1.0, jA.second, E, x[jA.first]); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */   | ||
|  | pair<Matrix,Vector> GaussianFactor::matrix(const Ordering& ordering, bool weight) const { | ||
|  | 
 | ||
|  |   // rtodo: this is called in eliminate, potential function to optimize?
 | ||
|  | 	// get pointers to the matrices
 | ||
|  | 	vector<const Matrix *> matrices; | ||
|  | 	BOOST_FOREACH(const Symbol& j, ordering) { | ||
|  | 		const Matrix& Aj = get_A(j); | ||
|  | 		matrices.push_back(&Aj); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// assemble
 | ||
|  | 	Matrix A = collect(matrices); | ||
|  | 	Vector b(b_); | ||
|  | 
 | ||
|  | 	// divide in sigma so error is indeed 0.5*|Ax-b|
 | ||
|  | 	if (weight) model_->WhitenSystem(A,b); | ||
|  | 	return make_pair(A, b); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | Matrix GaussianFactor::matrix_augmented(const Ordering& ordering, bool weight) const { | ||
|  | 	// get pointers to the matrices
 | ||
|  | 	vector<const Matrix *> matrices; | ||
|  | 	BOOST_FOREACH(const Symbol& j, ordering) { | ||
|  | 		const Matrix& Aj = get_A(j); | ||
|  | 		matrices.push_back(&Aj); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// load b into a matrix
 | ||
|  | 	size_t rows = b_.size(); | ||
|  | 	Matrix B_mat(rows, 1); | ||
|  | 	memcpy(B_mat.data().begin(), b_.data().begin(), rows*sizeof(double)); | ||
|  | 	matrices.push_back(&B_mat); | ||
|  | 
 | ||
|  | 	// divide in sigma so error is indeed 0.5*|Ax-b|
 | ||
|  | 	Matrix Ab = collect(matrices); | ||
|  | 	if (weight) model_->WhitenInPlace(Ab); | ||
|  | 
 | ||
|  | 	return Ab; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | boost::tuple<list<int>, list<int>, list<double> > | ||
|  | GaussianFactor::sparse(const Dimensions& columnIndices) const { | ||
|  | 
 | ||
|  | 	// declare return values
 | ||
|  | 	list<int> I,J; | ||
|  | 	list<double> S; | ||
|  | 
 | ||
|  | 	// iterate over all matrices in the factor
 | ||
|  | 	BOOST_FOREACH(const NamedMatrix& jA, As_) { | ||
|  | 		// find first column index for this key
 | ||
|  | 		int column_start = columnIndices.at(jA.first); | ||
|  | 		for (size_t i = 0; i < jA.second.size1(); i++) { | ||
|  | 			double sigma_i = model_->sigma(i); | ||
|  | 			for (size_t j = 0; j < jA.second.size2(); j++) | ||
|  | 				if (jA.second(i, j) != 0.0) { | ||
|  | 					I.push_back(i + 1); | ||
|  | 					J.push_back(j + column_start); | ||
|  | 					S.push_back(jA.second(i, j) / sigma_i); | ||
|  | 				} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// return the result
 | ||
|  | 	return boost::tuple<list<int>, list<int>, list<double> >(I,J,S); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | void GaussianFactor::append_factor(GaussianFactor::shared_ptr f, size_t m, size_t pos) { | ||
|  | 
 | ||
|  | 	// iterate over all matrices from the factor f
 | ||
|  | 	BOOST_FOREACH(const NamedMatrix& p, f->As_) { | ||
|  | 		const Symbol& key = p.first; | ||
|  | 		const Matrix& Aj = p.second; | ||
|  | 
 | ||
|  | 		// find the corresponding matrix among As
 | ||
|  | 		iterator mine = As_.find(key); | ||
|  | 		const bool exists = mine != As_.end(); | ||
|  | 
 | ||
|  | 		// find rows and columns
 | ||
|  | 		const size_t n = Aj.size2(); | ||
|  | 
 | ||
|  | 		// use existing or create new matrix
 | ||
|  | 		if (exists) | ||
|  | 		  copy(Aj.data().begin(), Aj.data().end(), (mine->second).data().begin()+pos*n); | ||
|  | 		else { | ||
|  | 			Matrix Z = zeros(m, n); | ||
|  | 			copy(Aj.data().begin(), Aj.data().end(), Z.data().begin()+pos*n); | ||
|  | 			insert(key, Z); | ||
|  | 		} | ||
|  | 
 | ||
|  | 	} // FOREACH
 | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | /* Note, in place !!!!
 | ||
|  |  * Do incomplete QR factorization for the first n columns | ||
|  |  * We will do QR on all matrices and on RHS | ||
|  |  * Then take first n rows and make a GaussianConditional, | ||
|  |  * and last rows to make a new joint linear factor on separator | ||
|  |  */ | ||
|  | /* ************************************************************************* */ | ||
|  | 
 | ||
|  | #include <boost/numeric/ublas/triangular.hpp>
 | ||
|  | #include <boost/numeric/ublas/io.hpp>
 | ||
|  | #include <boost/numeric/ublas/matrix_proxy.hpp>
 | ||
|  | 
 | ||
|  | pair<GaussianBayesNet, GaussianFactor::shared_ptr> | ||
|  | GaussianFactor::eliminateMatrix(Matrix& Ab, SharedDiagonal model, | ||
|  | 		        const Ordering& frontals, const Ordering& separators, | ||
|  | 		        const Dimensions& dimensions) { | ||
|  | 	bool verbose = false; | ||
|  | 
 | ||
|  | 	// Use in-place QR on dense Ab appropriate to NoiseModel
 | ||
|  | 	if (verbose) model->print("Before QR"); | ||
|  | 	SharedDiagonal noiseModel = model->QR(Ab); | ||
|  | 	if (verbose) model->print("After QR"); | ||
|  | //	gtsam::print(Ab, "Ab after QR");
 | ||
|  | 
 | ||
|  | 	// get dimensions of the eliminated variable
 | ||
|  | 	// TODO: this is another map find that should be avoided !
 | ||
|  | 	size_t n1 = dimensions.at(frontals.front()), n = Ab.size2() - 1; | ||
|  | 
 | ||
|  | 	// Get alias to augmented RHS d
 | ||
|  | 	ublas::matrix_column<Matrix> d(Ab,n); | ||
|  | 
 | ||
|  | //	// create base conditional Gaussian
 | ||
|  | //	GaussianConditional::shared_ptr conditional(new GaussianConditional(frontals.front(),
 | ||
|  | //			sub(d,  0, n1),                   // form d vector
 | ||
|  | //			sub(Ab, 0, n1, 0, n1),            // form R matrix
 | ||
|  | //			sub(noiseModel->sigmas(),0,n1))); // get standard deviations
 | ||
|  | //
 | ||
|  | //	// extract the block matrices for parents in both CG and LF
 | ||
|  | //	GaussianFactor::shared_ptr factor(new GaussianFactor);
 | ||
|  | //	size_t j = n1;
 | ||
|  | //	BOOST_FOREACH(const Symbol& cur_key, separators) {
 | ||
|  | //		size_t dim = dimensions.at(cur_key); // TODO avoid find !
 | ||
|  | //		conditional->add(cur_key, sub(Ab, 0, n1, j, j+dim));
 | ||
|  | //		factor->insert(cur_key, sub(Ab, n1, maxRank, j, j+dim)); // TODO: handle zeros properly
 | ||
|  | //		j+=dim;
 | ||
|  | //	}
 | ||
|  | //
 | ||
|  | //	// Set sigmas
 | ||
|  | //	// set the right model here
 | ||
|  | //	if (noiseModel->isConstrained())
 | ||
|  | //		factor->model_ = noiseModel::Constrained::MixedSigmas(sub(noiseModel->sigmas(),n1,maxRank));
 | ||
|  | //	else
 | ||
|  | //		factor->model_ = noiseModel::Diagonal::Sigmas(sub(noiseModel->sigmas(),n1,maxRank));
 | ||
|  | //
 | ||
|  | //	// extract ds vector for the new b
 | ||
|  | //	factor->set_b(sub(d, n1, maxRank));
 | ||
|  | //
 | ||
|  | //	return make_pair(conditional, factor);
 | ||
|  | 
 | ||
|  | 	// extract the conditionals
 | ||
|  | 	GaussianBayesNet bn; | ||
|  | 	size_t n0 = 0; | ||
|  | 	Ordering::const_iterator itFrontal1 = frontals.begin(), itFrontal2; | ||
|  | 	for(; itFrontal1!=frontals.end(); itFrontal1++) { | ||
|  | 		n1 = n0 + dimensions.at(*itFrontal1); | ||
|  | 		// create base conditional Gaussian
 | ||
|  | 		GaussianConditional::shared_ptr conditional(new GaussianConditional(*itFrontal1, | ||
|  | 				sub(d,  n0, n1),                   // form d vector
 | ||
|  | 				sub(Ab, n0, n1, n0, n1),           // form R matrix
 | ||
|  | 				sub(noiseModel->sigmas(),n0,n1))); // get standard deviations
 | ||
|  | 
 | ||
|  | 		// add parents to the conditional
 | ||
|  | 		itFrontal2 = itFrontal1; | ||
|  | 		itFrontal2 ++; | ||
|  | 		size_t j = n1; | ||
|  | 		for (; itFrontal2!=frontals.end(); itFrontal2++) { | ||
|  | 			size_t dim = dimensions.at(*itFrontal2); | ||
|  | 			conditional->add(*itFrontal2, sub(Ab, n0, n1, j, j+dim)); | ||
|  | 			j+=dim; | ||
|  | 		} | ||
|  | 		BOOST_FOREACH(const Symbol& cur_key, separators) { | ||
|  | 			size_t dim = dimensions.at(cur_key); | ||
|  | 			conditional->add(cur_key, sub(Ab, n0, n1, j, j+dim)); | ||
|  | 			j+=dim; | ||
|  | 		} | ||
|  | 		n0 = n1; | ||
|  | 		bn.push_back(conditional); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// if m<n1, this factor cannot be eliminated
 | ||
|  | 	size_t maxRank = noiseModel->dim(); | ||
|  | 	if (maxRank<n1) { | ||
|  | 		cout << "Perhaps your factor graph is singular." << endl; | ||
|  | 		cout << "Here are the keys involved in the factor now being eliminated:" << endl; | ||
|  | 		separators.print("Keys"); | ||
|  | 		cout << "The first key, '" << (string)frontals.front() << "', corresponds to the variable being eliminated" << endl; | ||
|  | 		throw(domain_error("GaussianFactor::eliminate: fewer constraints than unknowns")); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// extract the new factor
 | ||
|  | 	GaussianFactor::shared_ptr factor(new GaussianFactor); | ||
|  | 	size_t j = n1; | ||
|  | 	BOOST_FOREACH(const Symbol& cur_key, separators) { | ||
|  | 		size_t dim = dimensions.at(cur_key); // TODO avoid find !
 | ||
|  | 		factor->insert(cur_key, sub(Ab, n1, maxRank, j, j+dim)); // TODO: handle zeros properly
 | ||
|  | 		j+=dim; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Set sigmas
 | ||
|  | 	// set the right model here
 | ||
|  | 	if (noiseModel->isConstrained()) | ||
|  | 		factor->model_ = noiseModel::Constrained::MixedSigmas(sub(noiseModel->sigmas(),n1,maxRank)); | ||
|  | 	else | ||
|  | 		factor->model_ = noiseModel::Diagonal::Sigmas(sub(noiseModel->sigmas(),n1,maxRank)); | ||
|  | 
 | ||
|  | 	// extract ds vector for the new b
 | ||
|  | 	factor->set_b(sub(d, n1, maxRank)); | ||
|  | 
 | ||
|  | 	return make_pair(bn, factor); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | pair<GaussianConditional::shared_ptr, GaussianFactor::shared_ptr> | ||
|  | GaussianFactor::eliminateMatrix(Matrix& Ab, SharedDiagonal model, | ||
|  | 		        const Symbol& frontal, const Ordering& separator, | ||
|  | 		        const Dimensions& dimensions) { | ||
|  | 	Ordering frontals; frontals += frontal; | ||
|  | 	pair<GaussianBayesNet, shared_ptr> ret = | ||
|  | 			eliminateMatrix(Ab, model, frontals, separator, dimensions); | ||
|  | 	return make_pair(*ret.first.begin(), ret.second); | ||
|  | } | ||
|  | /* ************************************************************************* */ | ||
|  | pair<GaussianConditional::shared_ptr, GaussianFactor::shared_ptr> | ||
|  | GaussianFactor::eliminate(const Symbol& key) const | ||
|  | { | ||
|  | 	// if this factor does not involve key, we exit with empty CG and LF
 | ||
|  | 	const_iterator it = As_.find(key); | ||
|  | 	if (it==As_.end()) { | ||
|  | 		// Conditional Gaussian is just a parent-less node with P(x)=1
 | ||
|  | 		GaussianFactor::shared_ptr lf(new GaussianFactor); | ||
|  | 		GaussianConditional::shared_ptr cg(new GaussianConditional(key)); | ||
|  | 		return make_pair(cg,lf); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// create an internal ordering that eliminates key first
 | ||
|  | 	Ordering ordering; | ||
|  | 	ordering += key; | ||
|  | 	BOOST_FOREACH(const Symbol& k, keys()) | ||
|  | 		if (k != key) ordering += k; | ||
|  | 
 | ||
|  | 	// extract [A b] from the combined linear factor (ensure that x is leading)
 | ||
|  | 	Matrix Ab = matrix_augmented(ordering,false); | ||
|  | 
 | ||
|  | 	// TODO: this is where to split
 | ||
|  | 	ordering.pop_front(); | ||
|  | 	return eliminateMatrix(Ab, model_, key, ordering, dimensions()); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | namespace gtsam { | ||
|  | 
 | ||
|  | 	string symbol(char c, int index) { | ||
|  | 		stringstream ss; | ||
|  | 		ss << c << index; | ||
|  | 		return ss.str(); | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | /* ************************************************************************* */ |