127 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			127 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @file    SFMExample_SmartFactorPCG.cpp | ||
|  |  * @brief   Version of SFMExample_SmartFactor that uses Preconditioned Conjugate Gradient | ||
|  |  * @author  Frank Dellaert | ||
|  |  */ | ||
|  | 
 | ||
|  | // For an explanation of these headers, see SFMExample_SmartFactor.cpp
 | ||
|  | #include "SFMdata.h"
 | ||
|  | #include <gtsam/slam/SmartProjectionPoseFactor.h>
 | ||
|  | 
 | ||
|  | // These extra headers allow us a LM outer loop with PCG linear solver (inner loop)
 | ||
|  | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | ||
|  | #include <gtsam/linear/Preconditioner.h>
 | ||
|  | #include <gtsam/linear/PCGSolver.h>
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | // Make the typename short so it looks much cleaner
 | ||
|  | typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor; | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main(int argc, char* argv[]) { | ||
|  | 
 | ||
|  |   // Define the camera calibration parameters
 | ||
|  |   Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); | ||
|  | 
 | ||
|  |   // Define the camera observation noise model
 | ||
|  |   noiseModel::Isotropic::shared_ptr measurementNoise = | ||
|  |       noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | ||
|  | 
 | ||
|  |   // Create the set of ground-truth landmarks and poses
 | ||
|  |   vector<Point3> points = createPoints(); | ||
|  |   vector<Pose3> poses = createPoses(); | ||
|  | 
 | ||
|  |   // Create a factor graph
 | ||
|  |   NonlinearFactorGraph graph; | ||
|  | 
 | ||
|  |   // Simulated measurements from each camera pose, adding them to the factor graph
 | ||
|  |   for (size_t j = 0; j < points.size(); ++j) { | ||
|  | 
 | ||
|  |     // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
 | ||
|  |     SmartFactor::shared_ptr smartfactor(new SmartFactor()); | ||
|  | 
 | ||
|  |     for (size_t i = 0; i < poses.size(); ++i) { | ||
|  | 
 | ||
|  |       // generate the 2D measurement
 | ||
|  |       SimpleCamera camera(poses[i], *K); | ||
|  |       Point2 measurement = camera.project(points[j]); | ||
|  | 
 | ||
|  |       // call add() function to add measurement into a single factor, here we need to add:
 | ||
|  |       smartfactor->add(measurement, i, measurementNoise, K); | ||
|  |     } | ||
|  | 
 | ||
|  |     // insert the smart factor in the graph
 | ||
|  |     graph.push_back(smartfactor); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Add a prior on pose x0. This indirectly specifies where the origin is.
 | ||
|  |   // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | ||
|  |   noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas( | ||
|  |       (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); | ||
|  |   graph.push_back(PriorFactor<Pose3>(0, poses[0], poseNoise)); | ||
|  | 
 | ||
|  |   // Fix the scale ambiguity by adding a prior
 | ||
|  |   graph.push_back(PriorFactor<Pose3>(1, poses[1], poseNoise)); | ||
|  | 
 | ||
|  |   // Create the initial estimate to the solution
 | ||
|  |   Values initialEstimate; | ||
|  |   Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); | ||
|  |   for (size_t i = 0; i < poses.size(); ++i) | ||
|  |     initialEstimate.insert(i, poses[i].compose(delta)); | ||
|  | 
 | ||
|  |   // We will use LM in the outer optimization loop, but by specifying "Iterative" below
 | ||
|  |   // We indicate that an iterative linear solver should be used.
 | ||
|  |   // In addition, the *type* of the iterativeParams decides on the type of
 | ||
|  |   // iterative solver, in this case the SPCG (subgraph PCG)
 | ||
|  |   LevenbergMarquardtParams parameters; | ||
|  |   parameters.linearSolverType = NonlinearOptimizerParams::Iterative; | ||
|  |   parameters.absoluteErrorTol = 1e-10; | ||
|  |   parameters.relativeErrorTol = 1e-10; | ||
|  |   parameters.maxIterations = 500; | ||
|  |   PCGSolverParameters::shared_ptr pcg = | ||
|  |       boost::make_shared<PCGSolverParameters>(); | ||
|  |   pcg->preconditioner_ = | ||
|  |       boost::make_shared<BlockJacobiPreconditionerParameters>(); | ||
|  |   // Following is crucial:
 | ||
|  |   pcg->setEpsilon_abs(1e-10); | ||
|  |   pcg->setEpsilon_rel(1e-10); | ||
|  |   parameters.iterativeParams = pcg; | ||
|  | 
 | ||
|  |   LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters); | ||
|  |   Values result = optimizer.optimize(); | ||
|  | 
 | ||
|  |   // Display result as in SFMExample_SmartFactor.run
 | ||
|  |   result.print("Final results:\n"); | ||
|  |   Values landmark_result; | ||
|  |   for (size_t j = 0; j < points.size(); ++j) { | ||
|  |     SmartFactor::shared_ptr smart = //
 | ||
|  |         boost::dynamic_pointer_cast<SmartFactor>(graph[j]); | ||
|  |     if (smart) { | ||
|  |       boost::optional<Point3> point = smart->point(result); | ||
|  |       if (point) // ignore if boost::optional return NULL
 | ||
|  |         landmark_result.insert(j, *point); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   landmark_result.print("Landmark results:\n"); | ||
|  |   cout << "final error: " << graph.error(result) << endl; | ||
|  |   cout << "number of iterations: " << optimizer.iterations() << endl; | ||
|  | 
 | ||
|  |   return 0; | ||
|  | } | ||
|  | /* ************************************************************************* */ | ||
|  | 
 |