gtsam/matlab/+gtsam/points2DTrackStereo.m

102 lines
3.1 KiB
Matlab
Raw Normal View History

2015-01-20 12:56:04 +08:00
function [pts2dTracksStereo, initialEstimate] = points2DTrackStereo(K, cameraPoses, options, cylinders)
2015-01-13 12:27:21 +08:00
% Assess how accurately we can reconstruct points from a particular monocular camera setup.
% After creation of the factor graph for each track, linearize it around ground truth.
% There is no optimization
% @author: Zhaoyang Lv
import gtsam.*
%% create graph
graph = NonlinearFactorGraph;
%% create the noise factors
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
2015-01-15 13:20:06 +08:00
stereoNoise = noiseModel.Isotropic.Sigma(3,0.2);
2015-01-13 12:27:21 +08:00
cameraPosesNum = length(cameraPoses);
2015-01-13 12:27:21 +08:00
%% add measurements and initial camera & points values
pointsNum = 0;
cylinderNum = length(cylinders);
points3d = cell(0);
2015-01-13 12:27:21 +08:00
for i = 1:cylinderNum
cylinderPointsNum = length(cylinders{i}.Points);
2015-01-13 12:27:21 +08:00
pointsNum = pointsNum + length(cylinders{i}.Points);
for j = 1:cylinderPointsNum
points3d{end+1}.data = cylinders{i}.Points{j};
points3d{end}.Z = cell(0);
points3d{end}.cameraConstraint = cell(0);
points3d{end}.visiblity = false;
end
2015-01-13 12:27:21 +08:00
end
graph.add(PriorFactorPose3(symbol('x', 1), cameraPoses{1}, posePriorNoise));
pts3d = cell(cameraPosesNum, 1);
2015-01-13 12:27:21 +08:00
initialEstimate = Values;
for i = 1:cameraPosesNum
2015-01-20 12:56:04 +08:00
pts3d{i} = cylinderSampleProjectionStereo(K, cameraPoses{i}, options.camera.resolution, cylinders);
2015-01-13 12:27:21 +08:00
if isempty(pts3d{i}.Z)
continue;
2015-01-13 12:27:21 +08:00
end
2015-01-14 13:08:35 +08:00
measurementNum = length(pts3d{i}.Z);
for j = 1:measurementNum
index = pts3d{i}.overallIdx{j};
points3d{index}.Z{end+1} = pts3d{i}.Z{j};
points3d{index}.cameraConstraint{end+1} = i;
points3d{index}.visiblity = true;
2015-01-20 12:56:04 +08:00
graph.add(GenericStereoFactor3D(StereoPoint2(pts3d{i}.Z{j}.uL, pts3d{i}.Z{j}.uR, pts3d{i}.Z{j}.v), ...
2015-01-20 12:56:04 +08:00
stereoNoise, symbol('x', i), symbol('p', index), K));
2015-01-13 12:27:21 +08:00
end
2015-01-20 12:56:04 +08:00
2015-01-13 12:27:21 +08:00
end
%% initialize graph and values
2015-01-13 12:27:21 +08:00
for i = 1:cameraPosesNum
2015-01-14 12:36:19 +08:00
pose_i = cameraPoses{i}.retract(0.1*randn(6,1));
2015-01-13 12:27:21 +08:00
initialEstimate.insert(symbol('x', i), pose_i);
end
for i = 1:pointsNum
point_j = points3d{i}.data.retract(0.1*randn(3,1));
2015-01-20 12:56:04 +08:00
initialEstimate.insert(symbol('p', i), point_j);
2015-01-13 12:27:21 +08:00
end
2015-01-13 12:27:21 +08:00
%% Print the graph
graph.print(sprintf('\nFactor graph:\n'));
%% linearize the graph
2015-01-13 12:27:21 +08:00
marginals = Marginals(graph, initialEstimate);
%% get all the 2d points track information
pts2dTracksStereo.pt3d = cell(0);
pts2dTracksStereo.Z = cell(0);
pts2dTracksStereo.cov = cell(0);
for i = 1:pointsNum
if ~points3d{i}.visiblity
2015-01-15 13:20:06 +08:00
continue;
end
pts2dTracksStereo.pt3d{end+1} = points3d{i}.data;
pts2dTracksStereo.Z{end+1} = points3d{i}.Z;
2015-01-20 12:56:04 +08:00
pts2dTracksStereo.cov{end+1} = marginals.marginalCovariance(symbol('p', i));
end
cameraPosesCov = cell(cameraPosesNum, 1);
for i = 1:cameraPosesNum
cameraPosesCov{i} = marginals.marginalCovariance(symbol('x', i));
2015-01-13 12:27:21 +08:00
end
%% plot the result with covariance ellipses
2015-01-20 12:56:04 +08:00
plotFlyingResults(pts2dTracksStereo.pt3d, pts2dTracksStereo.cov, cameraPoses, cameraPosesCov, cylinders, options);
2015-01-20 05:18:18 +08:00
%plot3DTrajectory(initialEstimate, '*', 1, 8, marginals);
2015-01-20 05:18:18 +08:00
%view(3);
2015-01-13 12:27:21 +08:00
end