| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * @file   Matrix.cpp | 
					
						
							|  |  |  |  * @brief  matrix class | 
					
						
							|  |  |  |  * @author Christian Potthast | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <stdarg.h>
 | 
					
						
							|  |  |  | #include <string.h>
 | 
					
						
							|  |  |  | #include <iomanip>
 | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | #include <list>
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-21 08:59:33 +08:00
										 |  |  | #ifdef GSL
 | 
					
						
							|  |  |  | #include <gsl/gsl_blas.h> // needed for gsl blas
 | 
					
						
							|  |  |  | #include <gsl/gsl_linalg.h>
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-20 10:28:25 +08:00
										 |  |  | #include <boost/numeric/ublas/matrix_proxy.hpp>
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | #include <boost/foreach.hpp>
 | 
					
						
							|  |  |  | #include <boost/numeric/ublas/lu.hpp>
 | 
					
						
							|  |  |  | #include <boost/numeric/ublas/io.hpp>
 | 
					
						
							| 
									
										
										
										
											2010-01-23 06:28:03 +08:00
										 |  |  | #include <boost/numeric/ublas/triangular.hpp>
 | 
					
						
							|  |  |  | #include <boost/numeric/ublas/symmetric.hpp>
 | 
					
						
							|  |  |  | #include <boost/numeric/ublas/matrix_proxy.hpp>
 | 
					
						
							|  |  |  | #include <boost/numeric/ublas/vector_proxy.hpp>
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | #include <boost/tuple/tuple.hpp>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "Matrix.h"
 | 
					
						
							|  |  |  | #include "Vector.h"
 | 
					
						
							|  |  |  | #include "svdcmp.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | // use for switching quickly between GSL and nonGSL versions without reconfigure
 | 
					
						
							|  |  |  | //#define REVERTGSL
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-21 08:59:33 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | using namespace std; | 
					
						
							|  |  |  | namespace ublas = boost::numeric::ublas; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix Matrix_( size_t m, size_t n, const double* const data) { | 
					
						
							|  |  |  |   Matrix A(m,n); | 
					
						
							|  |  |  |   copy(data, data+m*n, A.data().begin()); | 
					
						
							|  |  |  |   return A; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix Matrix_( size_t m, size_t n, const Vector& v) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   Matrix A(m,n); | 
					
						
							|  |  |  |   // column-wise copy
 | 
					
						
							|  |  |  |   for( size_t j = 0, k=0  ; j < n ; j++) | 
					
						
							|  |  |  |     for( size_t i = 0; i < m ; i++,k++) | 
					
						
							|  |  |  |       A(i,j) = v(k); | 
					
						
							|  |  |  |   return A; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix Matrix_(size_t m, size_t n, ...) { | 
					
						
							|  |  |  |   Matrix A(m,n); | 
					
						
							|  |  |  |   va_list ap; | 
					
						
							|  |  |  |   va_start(ap, n); | 
					
						
							|  |  |  |   for( size_t i = 0 ; i < m ; i++) | 
					
						
							|  |  |  |     for( size_t j = 0 ; j < n ; j++) { | 
					
						
							|  |  |  |       double value = va_arg(ap, double); | 
					
						
							|  |  |  |       A(i,j) = value; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   va_end(ap); | 
					
						
							|  |  |  |   return A; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | /** create a matrix with value zero                                          */ | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix zeros( size_t m, size_t n ) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-01-13 00:12:31 +08:00
										 |  |  |   Matrix A(m,n, 0.0); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  |   return A; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /** 
 | 
					
						
							|  |  |  |  * Identity matrix | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | Matrix eye( size_t m, size_t n){ | 
					
						
							|  |  |  |   Matrix A = zeros(m,n); | 
					
						
							|  |  |  |   for(size_t i = 0; i<min(m,n); i++) A(i,i)=1.0; | 
					
						
							|  |  |  |   return A; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */  | 
					
						
							|  |  |  | /** Diagonal matrix values                                                   */ | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix diag(const Vector& v) { | 
					
						
							|  |  |  |   size_t m = v.size(); | 
					
						
							|  |  |  |   Matrix A = zeros(m,m); | 
					
						
							|  |  |  |   for(size_t i = 0; i<m; i++) A(i,i)=v(i); | 
					
						
							|  |  |  |   return A; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2009-11-10 00:57:30 +08:00
										 |  |  | /** Check if two matrices are the same                                       */ | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2009-08-26 23:25:47 +08:00
										 |  |  | bool equal_with_abs_tol(const Matrix& A, const Matrix& B, double tol) { | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   size_t n1 = A.size2(), m1 = A.size1(); | 
					
						
							|  |  |  |   size_t n2 = B.size2(), m2 = B.size1(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if(m1!=m2 || n1!=n2) return false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   for(size_t i=0; i<m1; i++) | 
					
						
							| 
									
										
										
										
											2009-11-10 00:57:30 +08:00
										 |  |  | 	  for(size_t j=0; j<n1; j++) { | 
					
						
							|  |  |  | 		  if(isnan(A(i,j)) xor isnan(B(i,j))) | 
					
						
							|  |  |  | 			  return false; | 
					
						
							|  |  |  | 		  if(fabs(A(i,j) - B(i,j)) > tol) | 
					
						
							|  |  |  | 			  return false; | 
					
						
							|  |  |  | 	  } | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   return true; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2009-12-08 21:53:33 +08:00
										 |  |  | bool assert_equal(const Matrix& expected, const Matrix& actual, double tol) { | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-12-08 21:53:33 +08:00
										 |  |  |   if (equal_with_abs_tol(expected,actual,tol)) return true; | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-12-08 21:53:33 +08:00
										 |  |  |   size_t n1 = expected.size2(), m1 = expected.size1(); | 
					
						
							|  |  |  |   size_t n2 = actual.size2(), m2 = actual.size1(); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   cout << "not equal:" << endl; | 
					
						
							| 
									
										
										
										
											2009-12-08 21:53:33 +08:00
										 |  |  |   print(expected,"expected = "); | 
					
						
							|  |  |  |   print(actual,"actual = "); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  |   if(m1!=m2 || n1!=n2) | 
					
						
							|  |  |  |     cout << m1 << "," << n1 << " != " << m2 << "," << n2 << endl; | 
					
						
							|  |  |  |   else | 
					
						
							| 
									
										
										
										
											2009-12-08 21:53:33 +08:00
										 |  |  |     print(actual-expected, "actual - expected = "); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  |   return false; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 00:04:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void multiplyAdd(double alpha, const Matrix& A, const Vector& x, Vector& e) { | 
					
						
							| 
									
										
										
										
											2010-02-01 02:25:03 +08:00
										 |  |  | #ifdef GSL
 | 
					
						
							|  |  |  | 	gsl_vector_const_view xg = gsl_vector_const_view_array(x.data().begin(), x.size()); | 
					
						
							|  |  |  | 	gsl_vector_view eg = gsl_vector_view_array(e.data().begin(), e.size()); | 
					
						
							|  |  |  | 	gsl_matrix_const_view Ag = gsl_matrix_const_view_array(A.data().begin(), A.size1(), A.size2()); | 
					
						
							|  |  |  | 	gsl_blas_dgemv (CblasNoTrans, alpha, &(Ag.matrix), &(xg.vector), 1.0, &(eg.vector)); | 
					
						
							|  |  |  | #else
 | 
					
						
							| 
									
										
										
										
											2010-02-01 00:04:24 +08:00
										 |  |  | 	// ublas e += prod(A,x) is terribly slow
 | 
					
						
							| 
									
										
										
										
											2010-02-01 06:56:06 +08:00
										 |  |  |   size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 	double * ei = e.data().begin(); | 
					
						
							|  |  |  | 	const double * aij = A.data().begin(); | 
					
						
							|  |  |  | 	for (int i = 0; i < m; i++, ei++) { | 
					
						
							|  |  |  | 		const double * xj = x.data().begin(); | 
					
						
							|  |  |  | 		for (int j = 0; j < n; j++, aij++, xj++) | 
					
						
							|  |  |  | 			(*ei) += alpha * (*aij) * (*xj); | 
					
						
							| 
									
										
										
										
											2010-02-01 02:25:03 +08:00
										 |  |  | 	} | 
					
						
							|  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2010-02-01 00:04:24 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-21 07:44:07 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void multiplyAdd(const Matrix& A, const Vector& x, Vector& e) { | 
					
						
							|  |  |  | 	// ublas e += prod(A,x) is terribly slow
 | 
					
						
							|  |  |  |   size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 	double * ei = e.data().begin(); | 
					
						
							|  |  |  | 	const double * aij = A.data().begin(); | 
					
						
							|  |  |  | 	for (int i = 0; i < m; i++, ei++) { | 
					
						
							|  |  |  | 		const double * xj = x.data().begin(); | 
					
						
							|  |  |  | 		for (int j = 0; j < n; j++, aij++, xj++) | 
					
						
							|  |  |  | 			(*ei) += (*aij) * (*xj); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-31 10:53:03 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Vector operator^(const Matrix& A, const Vector & v) { | 
					
						
							|  |  |  |   if (A.size1()!=v.size()) throw std::invalid_argument( | 
					
						
							|  |  |  |   		boost::str(boost::format("Matrix operator^ : A.m(%d)!=v.size(%d)") % A.size1() % v.size())); | 
					
						
							|  |  |  |   Vector vt = trans(v); | 
					
						
							|  |  |  |   Vector vtA = prod(vt,A); | 
					
						
							|  |  |  |   return trans(vtA); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2010-02-01 00:04:24 +08:00
										 |  |  | void transposeMultiplyAdd(double alpha, const Matrix& A, const Vector& e, Vector& x) { | 
					
						
							| 
									
										
										
										
											2010-02-01 02:25:03 +08:00
										 |  |  | #ifdef GSL
 | 
					
						
							|  |  |  | 	gsl_vector_const_view eg = gsl_vector_const_view_array(e.data().begin(), e.size()); | 
					
						
							|  |  |  | 	gsl_vector_view xg = gsl_vector_view_array(x.data().begin(), x.size()); | 
					
						
							|  |  |  | 	gsl_matrix_const_view Ag = gsl_matrix_const_view_array(A.data().begin(), A.size1(), A.size2()); | 
					
						
							|  |  |  | 	gsl_blas_dgemv (CblasTrans, alpha, &(Ag.matrix), &(eg.vector), 1.0, &(xg.vector)); | 
					
						
							|  |  |  | #else
 | 
					
						
							| 
									
										
										
										
											2010-02-01 00:04:24 +08:00
										 |  |  | 	// ublas x += prod(trans(A),e) is terribly slow
 | 
					
						
							| 
									
										
										
										
											2010-01-31 10:53:03 +08:00
										 |  |  | 	// TODO: use BLAS
 | 
					
						
							| 
									
										
										
										
											2010-02-01 06:56:06 +08:00
										 |  |  |   size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 	double * xj = x.data().begin(); | 
					
						
							|  |  |  | 	for (int j = 0; j < n; j++,xj++) { | 
					
						
							|  |  |  | 		const double * ei = e.data().begin(); | 
					
						
							|  |  |  | 		const double * aij = A.data().begin() + j; | 
					
						
							|  |  |  | 		for (int i = 0; i < m; i++, aij+=n, ei++) | 
					
						
							|  |  |  | 			(*xj) += alpha * (*aij) * (*ei); | 
					
						
							| 
									
										
										
										
											2010-01-31 10:53:03 +08:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2010-02-01 02:25:03 +08:00
										 |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-21 07:44:07 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void transposeMultiplyAdd(const Matrix& A, const Vector& e, Vector& x) { | 
					
						
							|  |  |  | 	// ublas x += prod(trans(A),e) is terribly slow
 | 
					
						
							|  |  |  | 	// TODO: use BLAS
 | 
					
						
							|  |  |  |   size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 	double * xj = x.data().begin(); | 
					
						
							|  |  |  | 	for (int j = 0; j < n; j++,xj++) { | 
					
						
							|  |  |  | 		const double * ei = e.data().begin(); | 
					
						
							|  |  |  | 		const double * aij = A.data().begin() + j; | 
					
						
							|  |  |  | 		for (int i = 0; i < m; i++, aij+=n, ei++) | 
					
						
							|  |  |  | 			(*xj) += (*aij) * (*ei); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2010-02-17 11:29:12 +08:00
										 |  |  | void transposeMultiplyAdd(double alpha, const Matrix& A, const Vector& e, SubVector x) { | 
					
						
							| 
									
										
										
										
											2010-02-16 07:53:16 +08:00
										 |  |  | 	// ublas x += prod(trans(A),e) is terribly slow
 | 
					
						
							|  |  |  | 	// TODO: use BLAS
 | 
					
						
							|  |  |  |   size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 	for (int j = 0; j < n; j++) { | 
					
						
							|  |  |  | 		const double * ei = e.data().begin(); | 
					
						
							|  |  |  | 		const double * aij = A.data().begin() + j; | 
					
						
							|  |  |  | 		for (int i = 0; i < m; i++, aij+=n, ei++) | 
					
						
							|  |  |  | 			x(j) += alpha * (*aij) * (*ei); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | Vector Vector_(const Matrix& A) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  |   Vector v(m*n); | 
					
						
							|  |  |  |   for( size_t j = 0, k=0  ; j < n ; j++) | 
					
						
							|  |  |  |     for( size_t i = 0; i < m ; i++,k++) | 
					
						
							|  |  |  |       v(k) = A(i,j); | 
					
						
							|  |  |  |   return v; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2010-01-21 00:08:14 +08:00
										 |  |  | Vector column_(const Matrix& A, size_t j) { | 
					
						
							|  |  |  | //	if (j>=A.size2())
 | 
					
						
							|  |  |  | //		throw invalid_argument("Column index out of bounds!");
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return column(A,j); // real boost version
 | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-20 22:42:05 +08:00
										 |  |  | 	// TODO: improve this
 | 
					
						
							| 
									
										
										
										
											2010-01-21 00:08:14 +08:00
										 |  |  | //	size_t m = A.size1();
 | 
					
						
							|  |  |  | //	Vector a(m);
 | 
					
						
							|  |  |  | //	for (size_t i=0; i<m; ++i)
 | 
					
						
							|  |  |  | //		a(i) = A(i,j);
 | 
					
						
							|  |  |  | //	return a;
 | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2010-01-22 02:51:59 +08:00
										 |  |  | Vector row_(const Matrix& A, size_t i) { | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | 	if (i>=A.size1()) | 
					
						
							|  |  |  | 		throw invalid_argument("Row index out of bounds!"); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-22 02:51:59 +08:00
										 |  |  | 	const double * Aptr = A.data().begin() + A.size2() * i; | 
					
						
							|  |  |  | 	return Vector_(A.size2(), Aptr); | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void print(const Matrix& A, const string &s) { | 
					
						
							|  |  |  |   size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // print out all elements
 | 
					
						
							|  |  |  |   cout << s << "[\n"; | 
					
						
							|  |  |  |   for( size_t i = 0 ; i < m ; i++) { | 
					
						
							|  |  |  |     for( size_t j = 0 ; j < n ; j++) { | 
					
						
							|  |  |  |       double aij = A(i,j); | 
					
						
							| 
									
										
										
										
											2009-12-03 07:01:49 +08:00
										 |  |  |       cout << setw(9) << (fabs(aij)<1e-12 ? 0 : aij) << "\t"; | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  |     } | 
					
						
							|  |  |  |     cout << endl; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   cout << "]" << endl; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix sub(const Matrix& A, size_t i1, size_t i2, size_t j1, size_t j2) { | 
					
						
							|  |  |  |   // using ublas is slower:
 | 
					
						
							|  |  |  |   // Matrix B = Matrix(ublas::project(A,ublas::range(i1,i2+1),ublas::range(j1,j2+1)));
 | 
					
						
							|  |  |  |   size_t m=i2-i1, n=j2-j1; | 
					
						
							|  |  |  |   Matrix B(m,n); | 
					
						
							|  |  |  |   for (size_t i=i1,k=0;i<i2;i++,k++) | 
					
						
							|  |  |  |     memcpy(&B(k,0),&A(i,j1),n*sizeof(double)); | 
					
						
							|  |  |  |   return B; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void insertSub(Matrix& big, const Matrix& small, size_t i, size_t j) { | 
					
						
							|  |  |  | 	// direct pointer method
 | 
					
						
							|  |  |  | 	size_t ib = big.size1(), jb = big.size2(), | 
					
						
							|  |  |  | 		   is = small.size1(), js = small.size2(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// pointer to start of window in big
 | 
					
						
							|  |  |  | 	double * bigptr = big.data().begin() + i*jb + j; | 
					
						
							|  |  |  | 	const double * smallptr = small.data().begin(); | 
					
						
							|  |  |  | 	for (size_t row=0; row<is; ++row) | 
					
						
							|  |  |  | 		memcpy(bigptr+row*jb, smallptr+row*js, js*sizeof(double)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void insertColumn(Matrix& A, const Vector& col, size_t j) { | 
					
						
							|  |  |  | 	ublas::matrix_column<Matrix> colproxy(A, j); | 
					
						
							|  |  |  | 	colproxy = col; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void insertColumn(Matrix& A, const Vector& col, size_t i, size_t j) { | 
					
						
							|  |  |  | 	ublas::matrix_column<Matrix> colproxy(A, j); | 
					
						
							|  |  |  | 	ublas::vector_range<ublas::matrix_column<Matrix> > colsubproxy(colproxy, | 
					
						
							|  |  |  | 			ublas::range (i, i+col.size())); | 
					
						
							|  |  |  | 	colsubproxy = col; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void solve(Matrix& A, Matrix& B) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-01-22 14:45:01 +08:00
										 |  |  | 	typedef ublas::permutation_matrix<std::size_t> pmatrix; | 
					
						
							|  |  |  | 	// create a working copy of the input
 | 
					
						
							|  |  |  | 	Matrix A_(A); | 
					
						
							|  |  |  | 	// create a permutation matrix for the LU-factorization
 | 
					
						
							|  |  |  | 	pmatrix pm(A_.size1()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// perform LU-factorization
 | 
					
						
							|  |  |  | 	int res = lu_factorize(A_,pm); | 
					
						
							|  |  |  | 	if( res != 0 ) throw runtime_error ("Matrix::solve: lu_factorize failed!"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// backsubstitute to get the inverse
 | 
					
						
							|  |  |  | 	lu_substitute(A_, pm, B); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix inverse(const Matrix& originalA) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   Matrix A(originalA); | 
					
						
							|  |  |  |   Matrix B = eye(A.size2()); | 
					
						
							|  |  |  |   solve(A,B); | 
					
						
							|  |  |  |   return B; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | /** Householder QR factorization, Golub & Van Loan p 224, explicit version    */ | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | pair<Matrix,Matrix> qr(const Matrix& A) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   const size_t m = A.size1(), n = A.size2(), kprime = min(m,n); | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   Matrix Q=eye(m,m),R(A); | 
					
						
							|  |  |  |   Vector v(m); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // loop over the kprime first columns 
 | 
					
						
							|  |  |  |   for(size_t j=0; j < kprime; j++){ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // we now work on the matrix (m-j)*(n-j) matrix A(j:end,j:end)
 | 
					
						
							|  |  |  |     const size_t mm=m-j; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // copy column from matrix to xjm, i.e. x(j:m) = A(j:m,j)
 | 
					
						
							|  |  |  |     Vector xjm(mm); | 
					
						
							|  |  |  |     for(size_t k = 0 ; k < mm; k++) | 
					
						
							|  |  |  |       xjm(k) = R(j+k, j);   | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |     // calculate the Householder vector v
 | 
					
						
							|  |  |  |     double beta; Vector vjm; | 
					
						
							|  |  |  |     boost::tie(beta,vjm) = house(xjm); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // pad with zeros to get m-dimensional vector v
 | 
					
						
							|  |  |  |     for(size_t k = 0 ; k < m; k++)  | 
					
						
							|  |  |  |       v(k) = k<j ? 0.0 : vjm(k-j); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // create Householder reflection matrix Qj = I-beta*v*v'
 | 
					
						
							| 
									
										
										
										
											2009-11-05 04:59:16 +08:00
										 |  |  |     Matrix Qj = eye(m) - beta * Matrix(outer_prod(v,v)); //BAD: Fix this
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     R = Qj * R; // update R
 | 
					
						
							|  |  |  |     Q = Q * Qj; // update Q
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   } // column j
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return make_pair(Q,R); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | /** Imperative version of Householder rank 1 update
 | 
					
						
							|  |  |  |  * i.e. do outer product update A = (I-beta vv')*A = A - v*(beta*A'*v)' = A - v*w' | 
					
						
							|  |  |  |  * but only in relevant part, from row j onwards | 
					
						
							|  |  |  |  * If called from householder_ does actually more work as first j columns  | 
					
						
							| 
									
										
										
										
											2009-11-13 00:16:32 +08:00
										 |  |  |  * will not be touched. However, is called from GaussianFactor.eliminate | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  |  * on a number of different matrices for which all columns change. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | inline void householder_update_manual(Matrix &A, int j, double beta, const Vector& vjm) { | 
					
						
							|  |  |  | 	const size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 	// w = beta*transpose(A(j:m,:))*v(j:m)
 | 
					
						
							|  |  |  | 	Vector w(n); | 
					
						
							|  |  |  | 	for( size_t c = 0; c < n; c++) { | 
					
						
							|  |  |  | 		w(c) = 0.0; | 
					
						
							|  |  |  | 		// dangerous as relies on row-major scheme
 | 
					
						
							|  |  |  | 		const double *a = &A(j,c), * const v = &vjm(0); | 
					
						
							|  |  |  | 		for( size_t r=j, s=0 ; r < m ; r++, s++, a+=n ) | 
					
						
							|  |  |  | 			// w(c) += A(r,c) * vjm(r-j)
 | 
					
						
							|  |  |  | 			w(c) += (*a) * v[s]; | 
					
						
							|  |  |  | 		w(c) *= beta; | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | 	// rank 1 update A(j:m,:) -= v(j:m)*w'
 | 
					
						
							|  |  |  | 	for( size_t c = 0 ; c < n; c++) { | 
					
						
							|  |  |  | 		double wc = w(c); | 
					
						
							|  |  |  | 		double *a = &A(j,c); const double * const v =&vjm(0); | 
					
						
							|  |  |  | 		for( size_t r=j, s=0 ; r < m ; r++, s++, a+=n ) | 
					
						
							|  |  |  | 			// A(r,c) -= vjm(r-j) * wjn(c-j);
 | 
					
						
							|  |  |  | 			(*a) -= v[s] * wc; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | void householder_update(Matrix &A, int j, double beta, const Vector& vjm) { | 
					
						
							| 
									
										
										
										
											2010-02-07 09:18:17 +08:00
										 |  |  | 	// TODO: SWAP IN ATLAS VERSION OF THE SYSTEM
 | 
					
						
							|  |  |  | //	// straight atlas version
 | 
					
						
							|  |  |  | //	const size_t m = A.size1(), n = A.size2(), mj = m-j;
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //	// find pointers to the data
 | 
					
						
							|  |  |  | //	const double * vptr = vjm.data().begin(); // mj long
 | 
					
						
							|  |  |  | //	double * Aptr = A.data().begin() + n*j; // mj x n - note that this starts at row j
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //	// first step: get w = beta*trans(A(j:m,:))*vjm
 | 
					
						
							|  |  |  | //	Vector w(n);
 | 
					
						
							|  |  |  | //	double * wptr = w.data().begin();
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //	// execute w generation
 | 
					
						
							|  |  |  | //	cblas_dgemv(CblasRowMajor, CblasTrans, mj, n, beta, Aptr, n, vptr, 1, 0.0, wptr, 1);
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //	// second step: rank 1 update A(j:m,:) = v(j:m)*w' + A(j:m,:)
 | 
					
						
							|  |  |  | //	cblas_dger(CblasRowMajor, mj, n, 1.0, vptr, 1, wptr, 1, Aptr, n);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-21 08:59:33 +08:00
										 |  |  | #ifdef GSL
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | #ifndef REVERTGSL
 | 
					
						
							|  |  |  | 	const size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 	// use GSL version
 | 
					
						
							|  |  |  | 	gsl_vector_const_view v = gsl_vector_const_view_array(vjm.data().begin(), m-j); | 
					
						
							|  |  |  | 	gsl_matrix_view Ag = gsl_matrix_view_array(A.data().begin(), m, n); | 
					
						
							|  |  |  | 	gsl_matrix_view Ag_view = gsl_matrix_submatrix (&(Ag.matrix), j, 0, m-j, n); | 
					
						
							|  |  |  | 	gsl_linalg_householder_hm (beta, &(v.vector), &(Ag_view.matrix)); | 
					
						
							| 
									
										
										
										
											2010-01-21 08:59:33 +08:00
										 |  |  | #else
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | 	householder_update_manual(A,j,beta,vjm); | 
					
						
							|  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | #else
 | 
					
						
							|  |  |  | 	householder_update_manual(A,j,beta,vjm); | 
					
						
							| 
									
										
										
										
											2010-01-21 08:59:33 +08:00
										 |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // update A, b
 | 
					
						
							|  |  |  | // A' \define A_{S}-ar and b'\define b-ad
 | 
					
						
							| 
									
										
										
										
											2010-01-16 15:22:34 +08:00
										 |  |  | // __attribute__ ((noinline))	// uncomment to prevent inlining when profiling
 | 
					
						
							| 
									
										
										
										
											2010-02-01 05:09:03 +08:00
										 |  |  | inline void updateAb_manual(Matrix& A, Vector& b, int j, const Vector& a, | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 		const Vector& r, double d) { | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | 	const size_t m = A.size1(), n = A.size2(); | 
					
						
							| 
									
										
										
										
											2010-01-20 22:42:05 +08:00
										 |  |  | 	for (size_t i = 0; i < m; i++) { // update all rows
 | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | 		double ai = a(i); | 
					
						
							|  |  |  | 		b(i) -= ai * d; | 
					
						
							| 
									
										
										
										
											2010-01-16 15:22:34 +08:00
										 |  |  | 		double *Aij = A.data().begin() + i * n + j + 1; | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | 		const double *rptr = r.data().begin() + j + 1; | 
					
						
							| 
									
										
										
										
											2010-01-16 15:22:34 +08:00
										 |  |  | 		// A(i,j+1:end) -= ai*r(j+1:end)
 | 
					
						
							| 
									
										
										
										
											2010-01-20 22:42:05 +08:00
										 |  |  | 		for (size_t j2 = j + 1; j2 < n; j2++, Aij++, rptr++) | 
					
						
							| 
									
										
										
										
											2010-01-16 15:22:34 +08:00
										 |  |  | 			*Aij -= ai * (*rptr); | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | } | 
					
						
							| 
									
										
										
										
											2010-01-22 02:51:59 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | static void updateAb(Matrix& A, Vector& b, int j, const Vector& a, | 
					
						
							|  |  |  | 		const Vector& r, double d) { | 
					
						
							|  |  |  | #ifdef GSL
 | 
					
						
							|  |  |  | #ifndef REVERTGSL
 | 
					
						
							|  |  |  | 	const size_t m = A.size1(), n = A.size2(); | 
					
						
							|  |  |  | 	// update A
 | 
					
						
							|  |  |  | 	// A(0:m,j+1:end) = A(0:m,j+1:end) - a(0:m)*r(j+1:end)'
 | 
					
						
							|  |  |  | 	// get a view for A
 | 
					
						
							|  |  |  | 	gsl_matrix_view Ag = gsl_matrix_view_array(A.data().begin(), m, n); | 
					
						
							|  |  |  | 	gsl_matrix_view Ag_view = gsl_matrix_submatrix (&(Ag.matrix), 0, j+1, m, n-j-1); | 
					
						
							|  |  |  | 	// get a view for r
 | 
					
						
							|  |  |  | 	gsl_vector_const_view rg = gsl_vector_const_view_array(r.data().begin()+j+1, n-j-1); | 
					
						
							|  |  |  | 	// get a view for a
 | 
					
						
							|  |  |  | 	gsl_vector_const_view ag = gsl_vector_const_view_array(a.data().begin(), m); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// rank one update
 | 
					
						
							|  |  |  | 	gsl_blas_dger (-1.0, &(ag.vector), &(rg.vector), &(Ag_view.matrix)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// update b
 | 
					
						
							|  |  |  | 	double * bptr = b.data().begin(); | 
					
						
							|  |  |  | 	const double * aptr = a.data().begin(); | 
					
						
							|  |  |  | 	for (size_t i = 0; i < m; i++) { | 
					
						
							|  |  |  | 		*(bptr+i) -= d* *(aptr+i); | 
					
						
							| 
									
										
										
										
											2010-01-22 02:51:59 +08:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | #else
 | 
					
						
							| 
									
										
										
										
											2010-02-01 05:09:03 +08:00
										 |  |  | 	updateAb_manual(A,b,j,a,r,d); | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 	updateAb_manual(A,b,j,a,r,d); | 
					
						
							| 
									
										
										
										
											2010-01-22 02:51:59 +08:00
										 |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-10-27 22:21:22 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | list<boost::tuple<Vector, double, double> > | 
					
						
							|  |  |  | weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) { | 
					
						
							| 
									
										
										
										
											2009-11-13 14:16:56 +08:00
										 |  |  | 	size_t m = A.size1(), n = A.size2(); // get size(A)
 | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | 	size_t maxRank = min(m,n); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | 	// create list
 | 
					
						
							|  |  |  | 	list<boost::tuple<Vector, double, double> > results; | 
					
						
							| 
									
										
										
										
											2009-10-29 20:52:27 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | 	Vector pseudo(m); // allocate storage for pseudo-inverse
 | 
					
						
							| 
									
										
										
										
											2010-01-16 15:22:34 +08:00
										 |  |  | 	Vector weights = reciprocal(emul(sigmas,sigmas)); // calculate weights once
 | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-13 14:16:56 +08:00
										 |  |  | 	// We loop over all columns, because the columns that can be eliminated
 | 
					
						
							|  |  |  | 	// are not necessarily contiguous. For each one, estimate the corresponding
 | 
					
						
							|  |  |  | 	// scalar variable x as d-rS, with S the separator (remaining columns).
 | 
					
						
							|  |  |  | 	// Then update A and b by substituting x with d-rS, zero-ing out x's column.
 | 
					
						
							| 
									
										
										
										
											2010-01-20 22:42:05 +08:00
										 |  |  | 	for (size_t j=0; j<n; ++j) { | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | 		// extract the first column of A
 | 
					
						
							| 
									
										
										
										
											2010-01-21 00:08:14 +08:00
										 |  |  | 		Vector a(column_(A, j)); // ublas::matrix_column is slower !
 | 
					
						
							| 
									
										
										
										
											2010-01-21 02:32:48 +08:00
										 |  |  | 		//print(a,"a");
 | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-13 14:16:56 +08:00
										 |  |  | 		// Calculate weighted pseudo-inverse and corresponding precision
 | 
					
						
							| 
									
										
										
										
											2010-01-16 14:25:11 +08:00
										 |  |  | 		double precision = weightedPseudoinverse(a, weights, pseudo); | 
					
						
							| 
									
										
										
										
											2010-01-21 02:32:48 +08:00
										 |  |  | //		cout << precision << endl;
 | 
					
						
							|  |  |  | //		print(pseudo,"pseudo");
 | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-13 14:16:56 +08:00
										 |  |  | 		// if precision is zero, no information on this column
 | 
					
						
							|  |  |  | 		if (precision < 1e-8) continue; | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | 		// create solution and copy into r
 | 
					
						
							| 
									
										
										
										
											2010-01-13 00:12:31 +08:00
										 |  |  | 		Vector r(basis(n, j)); | 
					
						
							| 
									
										
										
										
											2010-01-20 22:42:05 +08:00
										 |  |  | 		for (size_t j2=j+1; j2<n; ++j2) | 
					
						
							| 
									
										
										
										
											2010-01-21 00:08:14 +08:00
										 |  |  | 			r(j2) = inner_prod(pseudo, ublas::matrix_column<Matrix>(A, j2)); // TODO: don't use ublas
 | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		// create the rhs
 | 
					
						
							|  |  |  | 		double d = inner_prod(pseudo, b); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// construct solution (r, d, sigma)
 | 
					
						
							| 
									
										
										
										
											2010-01-16 14:25:11 +08:00
										 |  |  | 		// TODO: avoid sqrt, store precision or at least variance
 | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | 		results.push_back(boost::make_tuple(r, d, 1./sqrt(precision))); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-13 14:16:56 +08:00
										 |  |  | 		// exit after rank exhausted
 | 
					
						
							|  |  |  | 		if (results.size()>=maxRank) break; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-21 00:08:14 +08:00
										 |  |  | 		// update A, b, expensive, using outer product
 | 
					
						
							| 
									
										
										
										
											2010-01-16 12:57:58 +08:00
										 |  |  | 		// A' \define A_{S}-a*r and b'\define b-d*a
 | 
					
						
							|  |  |  | 		updateAb(A, b, j, a, r, d); | 
					
						
							| 
									
										
										
										
											2009-11-10 05:34:20 +08:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-11 22:42:09 +08:00
										 |  |  | 	return results; | 
					
						
							| 
									
										
										
										
											2009-10-27 22:21:22 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | /** Imperative version of Householder QR factorization, Golub & Van Loan p 224
 | 
					
						
							|  |  |  |  * version with Householder vectors below diagonal, as in GVL | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | inline void householder_manual(Matrix &A, size_t k) { | 
					
						
							| 
									
										
										
										
											2010-01-21 08:59:33 +08:00
										 |  |  | 	const size_t m = A.size1(), n = A.size2(), kprime = min(k,min(m,n)); | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | 	// loop over the kprime first columns
 | 
					
						
							|  |  |  | 	for(size_t j=0; j < kprime; j++){ | 
					
						
							|  |  |  | 		// below, the indices r,c always refer to original A
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// copy column from matrix to xjm, i.e. x(j:m) = A(j:m,j)
 | 
					
						
							|  |  |  | 		Vector xjm(m-j); | 
					
						
							|  |  |  | 		for(size_t r = j ; r < m; r++) | 
					
						
							|  |  |  | 			xjm(r-j) = A(r,j); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// calculate the Householder vector
 | 
					
						
							|  |  |  | 		double beta; Vector vjm; | 
					
						
							|  |  |  | 		boost::tie(beta,vjm) = house(xjm); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// do outer product update A = (I-beta vv')*A = A - v*(beta*A'*v)' = A - v*w'
 | 
					
						
							|  |  |  | 		householder_update(A, j, beta, vjm); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// the Householder vector is copied in the zeroed out part
 | 
					
						
							|  |  |  | 		for( size_t r = j+1 ; r < m ; r++ ) | 
					
						
							|  |  |  | 			A(r,j) = vjm(r-j); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	} // column j
 | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | void householder_(Matrix &A, size_t k)  | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-01-22 02:51:59 +08:00
										 |  |  | #ifdef GSL
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | #ifndef REVERTGSL
 | 
					
						
							|  |  |  | 	const size_t m = A.size1(), n = A.size2(), kprime = min(k,min(m,n)); | 
					
						
							| 
									
										
										
										
											2010-01-22 02:51:59 +08:00
										 |  |  | 	// loop over the kprime first columns
 | 
					
						
							|  |  |  | 	for(size_t j=0; j < kprime; j++){ | 
					
						
							|  |  |  | 		// below, the indices r,c always refer to original A
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// copy column from matrix to xjm, i.e. x(j:m) = A(j:m,j)
 | 
					
						
							|  |  |  | 		Vector xjm(m-j); | 
					
						
							|  |  |  | 		for(size_t r = j ; r < m; r++) | 
					
						
							|  |  |  | 			xjm(r-j) = A(r,j); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// calculate the Householder vector
 | 
					
						
							|  |  |  | 		// COPIED IN: boost::tie(beta,vjm) = house(xjm);
 | 
					
						
							|  |  |  | 		const double x0 = xjm(0); | 
					
						
							|  |  |  | 		const double x02 = x0*x0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const double sigma = inner_prod(trans(xjm),xjm) - x02; | 
					
						
							|  |  |  | 		double beta = 0.0; Vector vjm(xjm);  vjm(0) = 1.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if( sigma == 0.0 ) | 
					
						
							|  |  |  | 			beta = 0.0; | 
					
						
							|  |  |  | 		else { | 
					
						
							|  |  |  | 			double mu = sqrt(x02 + sigma); | 
					
						
							|  |  |  | 			if( x0 <= 0.0 ) | 
					
						
							|  |  |  | 				vjm(0) = x0 - mu; | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 				vjm(0) = -sigma / (x0 + mu); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			const double v02 = vjm(0)*vjm(0); | 
					
						
							|  |  |  | 			beta = 2.0 * v02 / (sigma + v02); | 
					
						
							|  |  |  | 			vjm = vjm / vjm(0); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// do outer product update A = (I-beta vv')*A = A - v*(beta*A'*v)' = A - v*w'
 | 
					
						
							|  |  |  | 		//householder_update(A, j, beta, vjm);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// inlined use GSL version
 | 
					
						
							|  |  |  | 		gsl_vector_const_view v = gsl_vector_const_view_array(vjm.data().begin(), m-j); | 
					
						
							|  |  |  | 		gsl_matrix_view Ag = gsl_matrix_view_array(A.data().begin(), m, n); | 
					
						
							|  |  |  | 		gsl_matrix_view Ag_view = gsl_matrix_submatrix (&(Ag.matrix), j, 0, m-j, n); | 
					
						
							|  |  |  | 		gsl_linalg_householder_hm (beta, &(v.vector), &(Ag_view.matrix)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// the Householder vector is copied in the zeroed out part
 | 
					
						
							|  |  |  | 		for( size_t r = j+1 ; r < m ; r++ ) | 
					
						
							|  |  |  | 			A(r,j) = vjm(r-j); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	} // column j
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #else
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | 	householder_manual(A, k); | 
					
						
							|  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2010-01-21 08:59:33 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 01:21:07 +08:00
										 |  |  | #else
 | 
					
						
							|  |  |  | 	householder_manual(A, k); | 
					
						
							| 
									
										
										
										
											2010-01-22 02:51:59 +08:00
										 |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | /** version with zeros below diagonal                                        */ | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void householder(Matrix &A, size_t k) { | 
					
						
							|  |  |  |   householder_(A,k); | 
					
						
							|  |  |  |   const size_t m = A.size1(), n = A.size2(), kprime = min(k,min(m,n)); | 
					
						
							|  |  |  |   for(size_t j=0; j < kprime; j++) | 
					
						
							|  |  |  |     for( size_t i = j+1 ; i < m ; i++ ) | 
					
						
							|  |  |  |       A(i,j) = 0.0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2009-12-29 21:59:34 +08:00
										 |  |  | Vector backSubstituteUpper(const Matrix& U, const Vector& b, bool unit) { | 
					
						
							|  |  |  | 	size_t m = U.size1(), n = U.size2(); | 
					
						
							|  |  |  | #ifndef NDEBUG
 | 
					
						
							|  |  |  | 	if (m!=n) | 
					
						
							|  |  |  | 		throw invalid_argument("backSubstituteUpper: U must be square"); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Vector result(n); | 
					
						
							|  |  |  | 	for (size_t i = n; i > 0; i--) { | 
					
						
							| 
									
										
										
										
											2009-12-30 21:20:16 +08:00
										 |  |  | 		double zi = b(i-1); | 
					
						
							| 
									
										
										
										
											2009-12-29 21:59:34 +08:00
										 |  |  | 		for (size_t j = i+1; j <= n; j++) | 
					
						
							| 
									
										
										
										
											2009-12-30 21:20:16 +08:00
										 |  |  | 			zi -= U(i-1,j-1) * result(j-1); | 
					
						
							|  |  |  | 		if (!unit) zi /= U(i-1,i-1); | 
					
						
							|  |  |  | 		result(i-1) = zi; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return result; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Vector backSubstituteUpper(const Vector& b, const Matrix& U, bool unit) { | 
					
						
							|  |  |  | 	size_t m = U.size1(), n = U.size2(); | 
					
						
							|  |  |  | #ifndef NDEBUG
 | 
					
						
							|  |  |  | 	if (m!=n) | 
					
						
							|  |  |  | 		throw invalid_argument("backSubstituteUpper: U must be square"); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Vector result(n); | 
					
						
							|  |  |  | 	for (size_t i = 1; i <= n; i++) { | 
					
						
							|  |  |  | 		double zi = b(i-1); | 
					
						
							|  |  |  | 		for (size_t j = 1; j < i; j++) | 
					
						
							|  |  |  | 			zi -= U(j-1,i-1) * result(j-1); | 
					
						
							|  |  |  | 		if (!unit) zi /= U(i-1,i-1); | 
					
						
							|  |  |  | 		result(i-1) = zi; | 
					
						
							| 
									
										
										
										
											2009-12-29 21:59:34 +08:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-12-29 21:59:34 +08:00
										 |  |  | 	return result; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-12-29 21:59:34 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Vector backSubstituteLower(const Matrix& L, const Vector& b, bool unit) { | 
					
						
							|  |  |  | 	size_t m = L.size1(), n = L.size2(); | 
					
						
							|  |  |  | #ifndef NDEBUG
 | 
					
						
							|  |  |  | 	if (m!=n) | 
					
						
							|  |  |  | 		throw invalid_argument("backSubstituteLower: L must be square"); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Vector result(n); | 
					
						
							|  |  |  | 	for (size_t i = 1; i <= n; i++) { | 
					
						
							| 
									
										
										
										
											2009-12-30 21:20:16 +08:00
										 |  |  | 		double zi = b(i-1); | 
					
						
							| 
									
										
										
										
											2009-12-29 21:59:34 +08:00
										 |  |  | 		for (size_t j = 1; j < i; j++) | 
					
						
							| 
									
										
										
										
											2009-12-30 21:20:16 +08:00
										 |  |  | 			zi -= L(i-1,j-1) * result(j-1); | 
					
						
							|  |  |  | 		if (!unit) zi /= L(i-1,i-1); | 
					
						
							|  |  |  | 		result(i-1) = zi; | 
					
						
							| 
									
										
										
										
											2009-12-29 21:59:34 +08:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-12-29 21:59:34 +08:00
										 |  |  | 	return result; | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix stack(size_t nrMatrices, ...) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-01-20 22:42:05 +08:00
										 |  |  |   size_t dimA1 = 0; | 
					
						
							|  |  |  |   size_t dimA2 = 0; | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  |   va_list ap; | 
					
						
							|  |  |  |   va_start(ap, nrMatrices); | 
					
						
							|  |  |  |   for(size_t i = 0 ; i < nrMatrices ; i++) { | 
					
						
							|  |  |  |     Matrix *M = va_arg(ap, Matrix *); | 
					
						
							|  |  |  |     dimA1 += M->size1(); | 
					
						
							|  |  |  |     dimA2 =  M->size2();  // TODO: should check if all the same !
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   va_end(ap); | 
					
						
							|  |  |  |   va_start(ap, nrMatrices); | 
					
						
							|  |  |  |   Matrix A(dimA1, dimA2); | 
					
						
							| 
									
										
										
										
											2010-01-20 22:42:05 +08:00
										 |  |  |   size_t vindex = 0; | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  |   for( size_t i = 0 ; i < nrMatrices ; i++) { | 
					
						
							|  |  |  |     Matrix *M = va_arg(ap, Matrix *); | 
					
						
							|  |  |  |     for(size_t d1 = 0; d1 < M->size1(); d1++) | 
					
						
							|  |  |  |       for(size_t d2 = 0; d2 < M->size2(); d2++) | 
					
						
							|  |  |  | 	A(vindex+d1, d2) = (*M)(d1, d2); | 
					
						
							|  |  |  |     vindex += M->size1(); | 
					
						
							|  |  |  |   }   | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return A; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2010-01-20 05:49:22 +08:00
										 |  |  | Matrix collect(const std::vector<const Matrix *>& matrices, size_t m, size_t n) | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2010-01-20 05:49:22 +08:00
										 |  |  | 	// if we have known and constant dimensions, use them
 | 
					
						
							|  |  |  | 	size_t dimA1 = m; | 
					
						
							|  |  |  | 	size_t dimA2 = n*matrices.size(); | 
					
						
							|  |  |  | 	if (!m && !n) | 
					
						
							|  |  |  | 		BOOST_FOREACH(const Matrix* M, matrices) { | 
					
						
							|  |  |  | 		dimA1 =  M->size1();  // TODO: should check if all the same !
 | 
					
						
							|  |  |  | 		dimA2 += M->size2(); | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2010-01-20 10:28:25 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	// memcpy version
 | 
					
						
							| 
									
										
										
										
											2010-01-20 05:49:22 +08:00
										 |  |  | 	Matrix A(dimA1, dimA2); | 
					
						
							| 
									
										
										
										
											2010-01-20 09:42:36 +08:00
										 |  |  | 	double * Aptr = A.data().begin(); | 
					
						
							| 
									
										
										
										
											2010-01-20 05:49:22 +08:00
										 |  |  | 	size_t hindex = 0; | 
					
						
							|  |  |  | 	BOOST_FOREACH(const Matrix* M, matrices) { | 
					
						
							| 
									
										
										
										
											2010-01-20 09:42:36 +08:00
										 |  |  | 		size_t row_len = M->size2(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// find the size of the row to copy
 | 
					
						
							|  |  |  | 		size_t row_size = sizeof(double) * row_len; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// loop over rows
 | 
					
						
							|  |  |  | 		for(size_t d1 = 0; d1 < M->size1(); ++d1) { // rows
 | 
					
						
							|  |  |  | 			// get a pointer to the start of the row in each matrix
 | 
					
						
							|  |  |  | 			double * Arow = Aptr + d1*dimA2 + hindex; | 
					
						
							|  |  |  | 			double * Mrow = const_cast<double*> (M->data().begin() + d1*row_len); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// do direct memory copy to move the row over
 | 
					
						
							|  |  |  | 			memcpy(Arow, Mrow, row_size); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		hindex += row_len; | 
					
						
							| 
									
										
										
										
											2010-01-20 05:49:22 +08:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-20 05:49:22 +08:00
										 |  |  | 	return A; | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix collect(size_t nrMatrices, ...) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   vector<const Matrix *> matrices; | 
					
						
							|  |  |  |   va_list ap; | 
					
						
							|  |  |  |   va_start(ap, nrMatrices); | 
					
						
							|  |  |  |   for( size_t i = 0 ; i < nrMatrices ; i++) { | 
					
						
							|  |  |  |     Matrix *M = va_arg(ap, Matrix *); | 
					
						
							|  |  |  |     matrices.push_back(M); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | return collect(matrices); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-11-06 21:43:39 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // row scaling
 | 
					
						
							| 
									
										
										
										
											2009-12-09 05:10:38 +08:00
										 |  |  | Matrix vector_scale(const Vector& v, const Matrix& A) { | 
					
						
							| 
									
										
										
										
											2009-11-06 21:43:39 +08:00
										 |  |  | 	Matrix M(A); | 
					
						
							| 
									
										
										
										
											2010-01-20 10:04:25 +08:00
										 |  |  | 	size_t m = A.size1(); size_t n = A.size2(); | 
					
						
							|  |  |  | 	for (size_t i=0; i<m; ++i) { // loop over rows
 | 
					
						
							|  |  |  | 		double vi = v(i); | 
					
						
							|  |  |  | 		//double vi = *(v.data().begin()+i); // not really an improvement
 | 
					
						
							|  |  |  | 		for (size_t j=0; j<n; ++j) { // loop over columns
 | 
					
						
							|  |  |  | 			double * Mptr = M.data().begin() + i*n + j; | 
					
						
							|  |  |  | 			(*Mptr) = (*Mptr) * vi; | 
					
						
							| 
									
										
										
										
											2009-11-06 21:43:39 +08:00
										 |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	return M; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // column scaling
 | 
					
						
							| 
									
										
										
										
											2009-12-09 05:10:38 +08:00
										 |  |  | Matrix vector_scale(const Matrix& A, const Vector& v) { | 
					
						
							| 
									
										
										
										
											2009-11-06 21:43:39 +08:00
										 |  |  | 	Matrix M(A); | 
					
						
							| 
									
										
										
										
											2010-01-20 10:28:25 +08:00
										 |  |  | 	size_t m = A.size1(); size_t n = A.size2(); | 
					
						
							|  |  |  | 	const double * vptr = v.data().begin(); | 
					
						
							|  |  |  | 	for (size_t i=0; i<m; ++i) { // loop over rows
 | 
					
						
							|  |  |  | 		for (size_t j=0; j<n; ++j) { // loop over columns
 | 
					
						
							|  |  |  | 			double * Mptr = M.data().begin() + i*n + j; | 
					
						
							|  |  |  | 			(*Mptr) = (*Mptr) * *(vptr+j); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2009-11-06 21:43:39 +08:00
										 |  |  | 	return M; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix skewSymmetric(double wx, double wy, double wz) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   return Matrix_(3,3, | 
					
						
							|  |  |  | 		  0.0, -wz, +wy, | 
					
						
							|  |  |  | 		  +wz, 0.0, -wx, | 
					
						
							|  |  |  | 		  -wy, +wx, 0.0); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | /** Numerical Recipes in C wrappers                                          
 | 
					
						
							|  |  |  |  *  create Numerical Recipes in C structure | 
					
						
							|  |  |  |  * pointers are subtracted by one to provide base 1 access  | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | double** createNRC(Matrix& A) { | 
					
						
							|  |  |  |   const size_t m=A.size1(); | 
					
						
							|  |  |  |   double** a = new double* [m]; | 
					
						
							|  |  |  |   for(size_t i = 0; i < m; i++)  | 
					
						
							|  |  |  |     a[i] = &A(i,0)-1; | 
					
						
							|  |  |  |   return a; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-23 06:28:03 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ******************************************
 | 
					
						
							|  |  |  |  *  | 
					
						
							|  |  |  |  * Modified from Justin's codebase | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *  Idea came from other public domain code.  Takes a S.P.D. matrix | 
					
						
							|  |  |  |  *  and computes the LL^t decomposition.  returns L, which is lower | 
					
						
							|  |  |  |  *  triangular.  Note this is the opposite convention from Matlab, | 
					
						
							|  |  |  |  *  which calculates Q'Q where Q is upper triangular. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * ******************************************/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace BNU = boost::numeric::ublas; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 02:07:29 +08:00
										 |  |  | Matrix LLt(const Matrix& A) | 
					
						
							| 
									
										
										
										
											2010-01-23 06:28:03 +08:00
										 |  |  | { | 
					
						
							|  |  |  | 	assert(A.size1() == A.size2()); | 
					
						
							|  |  |  |         Matrix L = zeros(A.size1(), A.size1()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for (size_t i = 0 ; i < A.size1(); i++) { | 
					
						
							|  |  |  |                 double p = A(i,i) - BNU::inner_prod( BNU::project( BNU::row(L, i), BNU::range(0, i) ), | 
					
						
							|  |  |  | 						     BNU::project( BNU::row(L, i), BNU::range(0, i) ) ); | 
					
						
							|  |  |  |                 assert(p > 0); // Rank failure
 | 
					
						
							|  |  |  |                 double l_i_i = sqrt(p); | 
					
						
							|  |  |  |                 L(i,i) = l_i_i; | 
					
						
							|  |  |  |                  | 
					
						
							|  |  |  | 		BNU::matrix_column<Matrix> l_i(L, i); | 
					
						
							|  |  |  |                 project( l_i, BNU::range(i+1, A.size1()) ) | 
					
						
							|  |  |  |                         = ( BNU::project( BNU::column(A, i), BNU::range(i+1, A.size1()) ) | 
					
						
							|  |  |  |                             - BNU::prod( BNU::project(L, BNU::range(i+1, A.size1()), BNU::range(0, i)),  | 
					
						
							|  |  |  | 					 BNU::project(BNU::row(L, i), BNU::range(0, i) ) ) ) / l_i_i; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         return L; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-01 02:07:29 +08:00
										 |  |  | Matrix RtR(const Matrix &A) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	return trans(LLt(A)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-23 06:28:03 +08:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * This is not ultra efficient, but not terrible, either. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | Matrix cholesky_inverse(const Matrix &A) | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-02-01 02:07:29 +08:00
										 |  |  |         Matrix L = LLt(A); | 
					
						
							| 
									
										
										
										
											2010-01-23 06:28:03 +08:00
										 |  |  |         Matrix inv(boost::numeric::ublas::identity_matrix<double>(A.size1())); | 
					
						
							|  |  |  |         inplace_solve (L, inv, BNU::lower_tag ()); | 
					
						
							|  |  |  |         return BNU::prod(trans(inv), inv); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | /** SVD                                                                      */ | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // version with in place modification of A
 | 
					
						
							| 
									
										
										
										
											2010-02-14 12:54:39 +08:00
										 |  |  | void svd(Matrix& A, Vector& s, Matrix& V, bool sort) { | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   const size_t m=A.size1(), n=A.size2(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   double * q = new double[n]; // singular values
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // create NRC matrices, u is in place
 | 
					
						
							|  |  |  |   V = Matrix(n,n); | 
					
						
							|  |  |  |   double **u = createNRC(A), **v = createNRC(V); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // perform SVD
 | 
					
						
							|  |  |  |   // need to pass pointer - 1 in NRC routines so u[1][1] is first element !
 | 
					
						
							| 
									
										
										
										
											2010-02-14 12:54:39 +08:00
										 |  |  |   svdcmp(u-1,m,n,q-1,v-1, sort); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 	 | 
					
						
							|  |  |  |   // copy singular values back
 | 
					
						
							|  |  |  |   s.resize(n); | 
					
						
							|  |  |  |   copy(q,q+n,s.begin()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   delete[] v; | 
					
						
							|  |  |  |   delete[] q; //switched to array delete
 | 
					
						
							|  |  |  |   delete[] u; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2010-02-14 12:54:39 +08:00
										 |  |  | void svd(const Matrix& A, Matrix& U, Vector& s, Matrix& V, bool sort) { | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  |   U = A;      // copy
 | 
					
						
							| 
									
										
										
										
											2010-02-14 12:54:39 +08:00
										 |  |  |   svd(U,s,V,sort); // call in-place version
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-23 06:28:03 +08:00
										 |  |  | #if 0
 | 
					
						
							| 
									
										
										
										
											2009-12-09 04:48:13 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // TODO, would be faster with Cholesky
 | 
					
						
							|  |  |  | Matrix inverse_square_root(const Matrix& A) { | 
					
						
							|  |  |  |   size_t m = A.size2(), n = A.size1(); | 
					
						
							|  |  |  | 	if (m!=n) | 
					
						
							|  |  |  | 		throw invalid_argument("inverse_square_root: A must be square"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Perform SVD, TODO: symmetric SVD?
 | 
					
						
							|  |  |  | 	Matrix U,V; | 
					
						
							|  |  |  | 	Vector S; | 
					
						
							|  |  |  | 	svd(A,U,S,V); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// invert and sqrt diagonal of S
 | 
					
						
							| 
									
										
										
										
											2010-01-10 21:53:31 +08:00
										 |  |  | 	// We also arbitrarily choose sign to make result have positive signs
 | 
					
						
							|  |  |  |   for(size_t i = 0; i<m; i++) S(i) = - pow(S(i),-0.5); | 
					
						
							| 
									
										
										
										
											2009-12-09 04:48:13 +08:00
										 |  |  |   return vector_scale(S, V); // V*S;
 | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2010-01-23 06:28:03 +08:00
										 |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // New, improved, with 100% more Cholesky goodness!
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Semantics: 
 | 
					
						
							|  |  |  | // if B = inverse_square_root(A), then all of the following are true:
 | 
					
						
							|  |  |  | // inv(B) * inv(B)' == A
 | 
					
						
							|  |  |  | // inv(B' * B) == A
 | 
					
						
							|  |  |  | Matrix inverse_square_root(const Matrix& A) { | 
					
						
							| 
									
										
										
										
											2010-02-01 02:07:29 +08:00
										 |  |  | 	Matrix L = LLt(A); | 
					
						
							| 
									
										
										
										
											2010-01-23 06:28:03 +08:00
										 |  |  |         Matrix inv(boost::numeric::ublas::identity_matrix<double>(A.size1())); | 
					
						
							|  |  |  |         inplace_solve (L, inv, BNU::lower_tag ()); | 
					
						
							|  |  |  | 	return inv; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-12-09 04:48:13 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Matrix square_root_positive(const Matrix& A) { | 
					
						
							|  |  |  |   size_t m = A.size2(), n = A.size1(); | 
					
						
							|  |  |  |   if (m!=n) | 
					
						
							|  |  |  |     throw invalid_argument("inverse_square_root: A must be square"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Perform SVD, TODO: symmetric SVD?
 | 
					
						
							|  |  |  |   Matrix U,V; | 
					
						
							|  |  |  |   Vector S; | 
					
						
							| 
									
										
										
										
											2010-02-14 12:54:39 +08:00
										 |  |  |   svd(A,U,S,V,false); | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // invert and sqrt diagonal of S
 | 
					
						
							|  |  |  |   // We also arbitrarily choose sign to make result have positive signs
 | 
					
						
							|  |  |  |   for(size_t i = 0; i<m; i++) S(i) = - pow(S(i),0.5); | 
					
						
							|  |  |  |   return vector_scale(S, V); // V*S;
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } // namespace gtsam
 |