| 
									
										
										
										
											2012-04-16 06:35:28 +08:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * schedulingExample.cpp | 
					
						
							|  |  |  |  * @brief hard scheduling example | 
					
						
							|  |  |  |  * @date March 25, 2011 | 
					
						
							|  |  |  |  * @author Frank Dellaert | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //#define ENABLE_TIMING
 | 
					
						
							|  |  |  | #define ADD_NO_CACHING
 | 
					
						
							|  |  |  | #define ADD_NO_PRUNING
 | 
					
						
							| 
									
										
										
										
											2012-05-15 08:47:19 +08:00
										 |  |  | #include <gtsam_unstable/discrete/Scheduler.h>
 | 
					
						
							| 
									
										
										
										
											2012-04-16 06:35:28 +08:00
										 |  |  | #include <gtsam/base/debug.h>
 | 
					
						
							|  |  |  | #include <gtsam/base/timing.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <boost/assign/std/vector.hpp>
 | 
					
						
							|  |  |  | #include <boost/assign/std/map.hpp>
 | 
					
						
							|  |  |  | #include <boost/optional.hpp>
 | 
					
						
							|  |  |  | #include <boost/foreach.hpp>
 | 
					
						
							|  |  |  | #include <boost/format.hpp>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <algorithm>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace boost::assign; | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void addStudent(Scheduler& s, size_t i) { | 
					
						
							|  |  |  | 	switch (i) { | 
					
						
							|  |  |  | 	case 0: | 
					
						
							|  |  |  | 		s.addStudent("Michael N", "AI", "Autonomy", "Perception", "Tucker Balch"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 1: | 
					
						
							|  |  |  | 		s.addStudent("Tucker H", "Controls", "AI", "Perception", "Jim Rehg"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 2: | 
					
						
							|  |  |  | 		s.addStudent("Jake H", "Controls", "AI", "Perception", "Henrik Christensen"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 3: | 
					
						
							|  |  |  | 		s.addStudent("Tobias K", "Controls", "AI", "Autonomy", "Mike Stilman"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 4: | 
					
						
							|  |  |  | 		s.addStudent("Shu J", "Controls", "AI", "HRI", "N/A 1"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 5: | 
					
						
							|  |  |  | 		s.addStudent("Akansel C", "AI", "Autonomy", "Mechanics", | 
					
						
							|  |  |  | 				"Henrik Christensen"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 6: | 
					
						
							|  |  |  | 		s.addStudent("Tiffany C", "Controls", "N/A 1", "N/A 2", "Charlie Kemp"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Scheduler largeExample(size_t nrStudents = 7) { | 
					
						
							| 
									
										
										
										
											2012-05-15 09:01:31 +08:00
										 |  |  | 	string path("../../../gtsam_unstable/discrete/examples/"); | 
					
						
							| 
									
										
										
										
											2012-04-16 06:35:28 +08:00
										 |  |  | 	Scheduler s(nrStudents, path + "Doodle.csv"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Harvey Lipkin", "Mechanics"); | 
					
						
							|  |  |  | 	s.addArea("Wayne Book", "Mechanics"); | 
					
						
							|  |  |  | 	s.addArea("Jun Ueda", "Mechanics"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//	s.addArea("Wayne Book", "Controls");
 | 
					
						
							|  |  |  | 	s.addArea("Patricio Vela", "Controls"); | 
					
						
							|  |  |  | 	s.addArea("Magnus Egerstedt", "Controls"); | 
					
						
							|  |  |  | 	s.addArea("Jun Ueda", "Controls"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//	s.addArea("Frank Dellaert", "Perception");
 | 
					
						
							|  |  |  | 	s.addArea("Jim Rehg", "Perception"); | 
					
						
							|  |  |  | 	s.addArea("Irfan Essa", "Perception"); | 
					
						
							|  |  |  | 	s.addArea("Aaron Bobick", "Perception"); | 
					
						
							|  |  |  | 	s.addArea("Henrik Christensen", "Perception"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Mike Stilman", "AI"); | 
					
						
							|  |  |  | 	s.addArea("Henrik Christensen", "AI"); | 
					
						
							|  |  |  | 	s.addArea("Frank Dellaert", "AI"); | 
					
						
							|  |  |  | 	s.addArea("Ayanna Howard", "AI"); | 
					
						
							|  |  |  | 	//	s.addArea("Tucker Balch", "AI");
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Ayanna Howard", "Autonomy"); | 
					
						
							|  |  |  | 	//	s.addArea("Andrea Thomaz", "Autonomy");
 | 
					
						
							|  |  |  | 	s.addArea("Charlie Kemp", "Autonomy"); | 
					
						
							|  |  |  | 	s.addArea("Tucker Balch", "Autonomy"); | 
					
						
							|  |  |  | 	s.addArea("Ron Arkin", "Autonomy"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Andrea Thomaz", "HRI"); | 
					
						
							|  |  |  | 	s.addArea("Karen Feigh", "HRI"); | 
					
						
							|  |  |  | 	s.addArea("Charlie Kemp", "HRI"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Allow students not to take three areas
 | 
					
						
							|  |  |  | 	s.addArea("N/A 1", "N/A 1"); | 
					
						
							|  |  |  | 	s.addArea("N/A 2", "N/A 2"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// add students
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < nrStudents; i++) | 
					
						
							|  |  |  | 		addStudent(s, i); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return s; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void runLargeExample() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Scheduler scheduler = largeExample(); | 
					
						
							|  |  |  | 	scheduler.print(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// BUILD THE GRAPH !
 | 
					
						
							|  |  |  | 	size_t addMutex = 2; | 
					
						
							|  |  |  | 	scheduler.buildGraph(addMutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Do brute force product and output that to file
 | 
					
						
							|  |  |  | 	if (scheduler.nrStudents() == 1) { // otherwise too slow
 | 
					
						
							|  |  |  | 		DecisionTreeFactor product = scheduler.product(); | 
					
						
							|  |  |  | 		product.dot("scheduling-large", false); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Do exact inference
 | 
					
						
							|  |  |  | 	//	SETDEBUG("timing-verbose", true);
 | 
					
						
							|  |  |  | 	SETDEBUG("DiscreteConditional::DiscreteConditional", true); | 
					
						
							|  |  |  | 	tic(2, "large"); | 
					
						
							|  |  |  | 	DiscreteFactor::sharedValues MPE = scheduler.optimalAssignment(); | 
					
						
							|  |  |  | 	toc(2, "large"); | 
					
						
							|  |  |  | 	tictoc_finishedIteration(); | 
					
						
							|  |  |  | 	tictoc_print(); | 
					
						
							|  |  |  | 	scheduler.printAssignment(MPE); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // Solve a series of relaxed problems for maximum flexibility solution
 | 
					
						
							|  |  |  | void solveStaged(size_t addMutex = 2) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// super-hack! just count...
 | 
					
						
							|  |  |  | 	bool debug = false; | 
					
						
							|  |  |  | 	SETDEBUG("DiscreteConditional::COUNT", true); | 
					
						
							|  |  |  | 	SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// make a vector with slot availability, initially all 1
 | 
					
						
							|  |  |  | 	// Reads file to get count :-)
 | 
					
						
							|  |  |  | 	vector<double> slotsAvailable(largeExample(0).nrTimeSlots(), 1.0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// now, find optimal value for each student, using relaxed mutex constraints
 | 
					
						
							|  |  |  | 	for (size_t s = 0; s < 7; s++) { | 
					
						
							|  |  |  | 		// add all students first time, then drop last one second time, etc...
 | 
					
						
							|  |  |  | 		Scheduler scheduler = largeExample(7 - s); | 
					
						
							|  |  |  | 		//scheduler.print(str(boost::format("Scheduler %d") % (7-s)));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// only allow slots not yet taken
 | 
					
						
							|  |  |  | 		scheduler.setSlotsAvailable(slotsAvailable); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// BUILD THE GRAPH !
 | 
					
						
							|  |  |  | 		scheduler.buildGraph(addMutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// Do EXACT INFERENCE
 | 
					
						
							| 
									
										
										
										
											2012-06-06 20:51:44 +08:00
										 |  |  | 		tic_(3,"eliminate"); | 
					
						
							| 
									
										
										
										
											2012-04-16 06:35:28 +08:00
										 |  |  | 		DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | 
					
						
							| 
									
										
										
										
											2012-06-06 20:51:44 +08:00
										 |  |  | 		toc_(3,"eliminate"); | 
					
						
							| 
									
										
										
										
											2012-04-16 06:35:28 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		// find root node
 | 
					
						
							|  |  |  | 		DiscreteConditional::shared_ptr root = *(chordal->rbegin()); | 
					
						
							|  |  |  | 		if (debug) | 
					
						
							|  |  |  | 			root->print(""/*scheduler.studentName(s)*/); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// solve root node only
 | 
					
						
							|  |  |  | 		Scheduler::Values values; | 
					
						
							|  |  |  | 		size_t bestSlot = root->solve(values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// get corresponding count
 | 
					
						
							|  |  |  | 		DiscreteKey dkey = scheduler.studentKey(6 - s); | 
					
						
							|  |  |  | 		values[dkey.first] = bestSlot; | 
					
						
							|  |  |  | 		size_t count = (*root)(values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// remove this slot from consideration
 | 
					
						
							|  |  |  | 		slotsAvailable[bestSlot] = 0.0; | 
					
						
							|  |  |  | 		cout << boost::format("%s = %d (%d), count = %d") % scheduler.studentName(6-s) | 
					
						
							|  |  |  | 				% scheduler.slotName(bestSlot) % bestSlot % count << endl; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	tictoc_print_(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Solution with addMutex = 2: (20 secs)
 | 
					
						
							|  |  |  | 	//	TC = Wed 2 (9), count = 96375041778
 | 
					
						
							|  |  |  | 	//	AC = Tue 2 (5), count = 4076088090
 | 
					
						
							|  |  |  | 	//	SJ = Mon 1 (0), count = 29596704
 | 
					
						
							|  |  |  | 	//	TK = Mon 3 (2), count = 755370
 | 
					
						
							|  |  |  | 	//	JH = Wed 4 (11), count = 12000
 | 
					
						
							|  |  |  | 	//	TH = Fri 2 (17), count = 220
 | 
					
						
							|  |  |  | 	//	MN = Fri 1 (16), count = 5
 | 
					
						
							|  |  |  | 	//
 | 
					
						
							|  |  |  | 	// Mutex does make a difference !!
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // Sample from solution found above and evaluate cost function
 | 
					
						
							|  |  |  | bool NonZero(size_t i) { | 
					
						
							|  |  |  | 	return i > 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | DiscreteBayesNet::shared_ptr createSampler(size_t i, | 
					
						
							|  |  |  | 		size_t slot, vector<Scheduler>& schedulers) { | 
					
						
							|  |  |  | 	Scheduler scheduler = largeExample(0); // todo: wrong nr students
 | 
					
						
							|  |  |  | 	addStudent(scheduler, i); | 
					
						
							|  |  |  | 	SETDEBUG("Scheduler::buildGraph", false); | 
					
						
							|  |  |  | 	scheduler.addStudentSpecificConstraints(0, slot); | 
					
						
							|  |  |  | 	DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | 
					
						
							|  |  |  | 	// chordal->print(scheduler[i].studentKey(0).name()); // large !
 | 
					
						
							|  |  |  | 	schedulers.push_back(scheduler); | 
					
						
							|  |  |  | 	return chordal; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void sampleSolutions() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	vector<Scheduler> schedulers; | 
					
						
							|  |  |  | 	vector<DiscreteBayesNet::shared_ptr> samplers(7); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Given the time-slots, we can create 7 independent samplers
 | 
					
						
							|  |  |  | 	vector<size_t> slots; | 
					
						
							|  |  |  | 	slots += 16, 17, 11, 2, 0, 5, 9; // given slots
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < 7; i++) | 
					
						
							|  |  |  | 		samplers[i] = createSampler(i, slots[i], schedulers); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// now, sample schedules
 | 
					
						
							|  |  |  | 	for (size_t n = 0; n < 500; n++) { | 
					
						
							|  |  |  | 		vector<size_t> stats(19, 0); | 
					
						
							|  |  |  | 		vector<Scheduler::sharedValues> samples; | 
					
						
							|  |  |  | 		for (size_t i = 0; i < 7; i++) { | 
					
						
							|  |  |  | 			samples.push_back(sample(*samplers[i])); | 
					
						
							|  |  |  | 			schedulers[i].accumulateStats(samples[i], stats); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		size_t max = *max_element(stats.begin(), stats.end()); | 
					
						
							|  |  |  | 		size_t min = *min_element(stats.begin(), stats.end()); | 
					
						
							|  |  |  | 		size_t nz = count_if(stats.begin(), stats.end(), NonZero); | 
					
						
							|  |  |  | 		if (nz >= 15 && max <= 2) { | 
					
						
							|  |  |  | 			cout << boost::format( | 
					
						
							|  |  |  | 					"Sampled schedule %d, min = %d, nz = %d, max = %d\n") % (n + 1) % min | 
					
						
							|  |  |  | 					% nz % max; | 
					
						
							|  |  |  | 			for (size_t i = 0; i < 7; i++) { | 
					
						
							|  |  |  | 				cout << schedulers[i].studentName(0) << " : " << schedulers[i].slotName( | 
					
						
							|  |  |  | 						slots[i]) << endl; | 
					
						
							|  |  |  | 				schedulers[i].printSpecial(samples[i]); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	// Output was
 | 
					
						
							|  |  |  | 	// Sampled schedule 359, min = 0, nz = 15, max = 2
 | 
					
						
							|  |  |  | 	//	Michael N : Fri 9:00-10.30
 | 
					
						
							|  |  |  | 	//	Michael N AI: Frank Dellaert
 | 
					
						
							|  |  |  | 	//	Michael N Autonomy: Charlie Kemp
 | 
					
						
							|  |  |  | 	//	Michael N Perception: Henrik Christensen
 | 
					
						
							|  |  |  | 	//
 | 
					
						
							|  |  |  | 	//	Tucker H : Fri 10:30-12:00
 | 
					
						
							|  |  |  | 	//	 Tucker H AI: Ayanna Howard
 | 
					
						
							|  |  |  | 	//	Tucker H Controls: Patricio Vela
 | 
					
						
							|  |  |  | 	//	Tucker H Perception: Irfan Essa
 | 
					
						
							|  |  |  | 	//
 | 
					
						
							|  |  |  | 	//	Jake H : Wed 3:00-4:30
 | 
					
						
							|  |  |  | 	//	   Jake H AI: Mike Stilman
 | 
					
						
							|  |  |  | 	//	Jake H Controls: Magnus Egerstedt
 | 
					
						
							|  |  |  | 	//	Jake H Perception: Jim Rehg
 | 
					
						
							|  |  |  | 	//
 | 
					
						
							|  |  |  | 	//	Tobias K : Mon 1:30-3:00
 | 
					
						
							|  |  |  | 	//	 Tobias K AI: Ayanna Howard
 | 
					
						
							|  |  |  | 	//	Tobias K Autonomy: Charlie Kemp
 | 
					
						
							|  |  |  | 	//	Tobias K Controls: Magnus Egerstedt
 | 
					
						
							|  |  |  | 	//
 | 
					
						
							|  |  |  | 	//	Shu J : Mon 9:00-10.30
 | 
					
						
							|  |  |  | 	//	    Shu J AI: Mike Stilman
 | 
					
						
							|  |  |  | 	//	Shu J Controls: Jun Ueda
 | 
					
						
							|  |  |  | 	//	   Shu J HRI: Andrea Thomaz
 | 
					
						
							|  |  |  | 	//
 | 
					
						
							|  |  |  | 	//	Akansel C : Tue 10:30-12:00
 | 
					
						
							|  |  |  | 	//	Akansel C AI: Frank Dellaert
 | 
					
						
							|  |  |  | 	//	Akansel C Autonomy: Tucker Balch
 | 
					
						
							|  |  |  | 	//	Akansel C Mechanics: Harvey Lipkin
 | 
					
						
							|  |  |  | 	//
 | 
					
						
							|  |  |  | 	//	Tiffany C : Wed 10:30-12:00
 | 
					
						
							|  |  |  | 	//	Tiffany C Controls: Patricio Vela
 | 
					
						
							|  |  |  | 	//	Tiffany C N/A 1: N/A 1
 | 
					
						
							|  |  |  | 	//	Tiffany C N/A 2: N/A 2
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void accomodateStudent() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// super-hack! just count...
 | 
					
						
							|  |  |  | 	bool debug = false; | 
					
						
							|  |  |  | 	//	SETDEBUG("DiscreteConditional::COUNT",true);
 | 
					
						
							|  |  |  | 	SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Scheduler scheduler = largeExample(0); | 
					
						
							|  |  |  | 	//	scheduler.addStudent("Victor E", "Autonomy", "HRI", "AI",
 | 
					
						
							|  |  |  | 	//			"Henrik Christensen");
 | 
					
						
							|  |  |  | 	scheduler.addStudent("Carlos N", "Perception", "AI", "Autonomy", | 
					
						
							|  |  |  | 			"Henrik Christensen"); | 
					
						
							|  |  |  | 	scheduler.print("scheduler"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// rule out all occupied slots
 | 
					
						
							|  |  |  | 	vector<size_t> slots; | 
					
						
							|  |  |  | 	slots += 16, 17, 11, 2, 0, 5, 9, 14; | 
					
						
							|  |  |  | 	vector<double> slotsAvailable(scheduler.nrTimeSlots(), 1.0); | 
					
						
							|  |  |  | 	BOOST_FOREACH(size_t s, slots) | 
					
						
							|  |  |  | 	slotsAvailable[s] = 0; | 
					
						
							|  |  |  | 	scheduler.setSlotsAvailable(slotsAvailable); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// BUILD THE GRAPH !
 | 
					
						
							|  |  |  | 	scheduler.buildGraph(1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Do EXACT INFERENCE
 | 
					
						
							|  |  |  | 	DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// find root node
 | 
					
						
							|  |  |  | 	DiscreteConditional::shared_ptr root = *(chordal->rbegin()); | 
					
						
							|  |  |  | 	if (debug) | 
					
						
							|  |  |  | 		root->print(""/*scheduler.studentName(s)*/); | 
					
						
							|  |  |  | 	//	GTSAM_PRINT(*chordal);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// solve root node only
 | 
					
						
							|  |  |  | 	Scheduler::Values values; | 
					
						
							|  |  |  | 	size_t bestSlot = root->solve(values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// get corresponding count
 | 
					
						
							|  |  |  | 	DiscreteKey dkey = scheduler.studentKey(0); | 
					
						
							|  |  |  | 	values[dkey.first] = bestSlot; | 
					
						
							|  |  |  | 	size_t count = (*root)(values); | 
					
						
							|  |  |  | 	cout << boost::format("%s = %d (%d), count = %d") % scheduler.studentName(0) | 
					
						
							|  |  |  | 			% scheduler.slotName(bestSlot) % bestSlot % count << endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// sample schedules
 | 
					
						
							|  |  |  | 	for (size_t n = 0; n < 10; n++) { | 
					
						
							|  |  |  | 		Scheduler::sharedValues sample0 = sample(*chordal); | 
					
						
							|  |  |  | 		scheduler.printAssignment(sample0); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | int main() { | 
					
						
							|  |  |  | 		runLargeExample(); | 
					
						
							|  |  |  | 	solveStaged(3); | 
					
						
							|  |  |  | //		sampleSolutions();
 | 
					
						
							|  |  |  | 	//	accomodateStudent();
 | 
					
						
							|  |  |  | 	return 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | 
 |