600 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
		
		
			
		
	
	
			600 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @file ProjectionFactor.h | ||
|  |  * @brief Basic bearing factor from 2D measurement | ||
|  |  * @author Chris Beall | ||
|  |  * @author Luca Carlone | ||
|  |  * @author Zsolt Kira | ||
|  |  */ | ||
|  | 
 | ||
|  | #pragma once
 | ||
|  | 
 | ||
|  | #include <gtsam/nonlinear/NonlinearFactor.h>
 | ||
|  | #include <gtsam/geometry/PinholeCamera.h>
 | ||
|  | #include <gtsam/geometry/Pose3.h>
 | ||
|  | #include <gtsam/linear/HessianFactor.h>
 | ||
|  | #include <vector>
 | ||
|  | #include <gtsam_unstable/geometry/triangulation.h>
 | ||
|  | #include <boost/optional.hpp>
 | ||
|  | //#include <boost/assign.hpp>
 | ||
|  | 
 | ||
|  | static bool isDebug=false; | ||
|  | 
 | ||
|  | namespace gtsam { | ||
|  | 
 | ||
|  |   // default threshold for selective relinearization
 | ||
|  |   static double defaultLinThreshold = -1; // 1e-7; // 0.01
 | ||
|  |   // default threshold for retriangulation
 | ||
|  |   static double defaultTriangThreshold = 1e-5; | ||
|  |   // default threshold for rank deficient triangulation
 | ||
|  |   static double defaultRankTolerance = 1; // this value may be scenario-dependent and has to be larger in  presence of larger noise
 | ||
|  |   // if set to true will use the rotation-only version for degenerate cases
 | ||
|  |   static bool manageDegeneracy = true; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * Structure for storing some state memory, used to speed up optimization | ||
|  |    * @addtogroup SLAM | ||
|  |    */ | ||
|  |   class SmartProjectionHessianFactorState { | ||
|  |   public: | ||
|  | 
 | ||
|  |     static int lastID; | ||
|  |     int ID; | ||
|  | 
 | ||
|  |     SmartProjectionHessianFactorState() { | ||
|  |       ID = lastID++; | ||
|  |       calculatedHessian = false; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Linearization point
 | ||
|  |     Values values; | ||
|  |     std::vector<Pose3> cameraPosesLinearization; | ||
|  | 
 | ||
|  |     // Triangulation at current linearization point
 | ||
|  |     Point3 point; | ||
|  |     std::vector<Pose3> cameraPosesTriangulation; | ||
|  |     bool degenerate; | ||
|  |     bool cheiralityException; | ||
|  | 
 | ||
|  |     // Overall reprojection error
 | ||
|  |     double overallError; | ||
|  |     std::vector<Pose3> cameraPosesError; | ||
|  | 
 | ||
|  |     // Hessian representation (after Schur complement)
 | ||
|  |     bool calculatedHessian; | ||
|  |     Matrix H; | ||
|  |     Vector gs_vector; | ||
|  |     std::vector<Matrix> Gs; | ||
|  |     std::vector<Vector> gs; | ||
|  |     double f; | ||
|  | 
 | ||
|  |     // C = Hl'Hl
 | ||
|  |     // Cinv = inv(Hl'Hl)
 | ||
|  |     // Matrix3 Cinv;
 | ||
|  |     // E = Hx'Hl
 | ||
|  |     // w = Hl'b
 | ||
|  |   }; | ||
|  | 
 | ||
|  |   int SmartProjectionHessianFactorState::lastID = 0; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * The calibration is known here. | ||
|  |    * @addtogroup SLAM | ||
|  |    */ | ||
|  |   template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2> | ||
|  |   class SmartProjectionHessianFactor: public NonlinearFactor { | ||
|  |   protected: | ||
|  | 
 | ||
|  |     // Keep a copy of measurement and calibration for I/O
 | ||
|  |     std::vector<Point2> measured_;                    ///< 2D measurement for each of the m views
 | ||
|  |     std::vector< SharedNoiseModel > noise_;   ///< noise model used
 | ||
|  |     ///< (important that the order is the same as the keys that we use to create the factor)
 | ||
|  |     std::vector< boost::shared_ptr<CALIBRATION> > K_all_;  ///< shared pointer to calibration object (one for each camera)
 | ||
|  | 
 | ||
|  |     double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
 | ||
|  | 
 | ||
|  |     double rankTolerance; ///< threshold to decide whether triangulation is degenerate
 | ||
|  | 
 | ||
|  |     double linearizationThreshold; ///< threshold to decide whether to re-linearize
 | ||
|  | 
 | ||
|  |     boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame (one for each camera)
 | ||
|  | 
 | ||
|  |     boost::shared_ptr<SmartProjectionHessianFactorState> state_; | ||
|  | 
 | ||
|  |     // verbosity handling for Cheirality Exceptions
 | ||
|  |     bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
 | ||
|  |     bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
 | ||
|  | 
 | ||
|  |   public: | ||
|  | 
 | ||
|  |     /// shorthand for base class type
 | ||
|  |     typedef NonlinearFactor Base; | ||
|  | 
 | ||
|  |     /// shorthand for this class
 | ||
|  |     typedef SmartProjectionHessianFactor<POSE, LANDMARK, CALIBRATION> This; | ||
|  | 
 | ||
|  |     /// shorthand for a smart pointer to a factor
 | ||
|  |     typedef boost::shared_ptr<This> shared_ptr; | ||
|  | 
 | ||
|  |     /// shorthand for smart projection factor state variable
 | ||
|  |     typedef boost::shared_ptr<SmartProjectionHessianFactorState> SmartFactorStatePtr; | ||
|  | 
 | ||
|  |     /**
 | ||
|  |      * Constructor | ||
|  |      * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark | ||
|  |      * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) | ||
|  |      * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) | ||
|  |      * @param K shared pointer to the constant calibration | ||
|  |      * @param body_P_sensor is the transform from body to sensor frame (default identity) | ||
|  |      */ | ||
|  |     SmartProjectionHessianFactor( | ||
|  |         const double rankTol = defaultRankTolerance, | ||
|  |         const double linThreshold = defaultLinThreshold, | ||
|  |         boost::optional<POSE> body_P_sensor = boost::none, | ||
|  |         SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionHessianFactorState())) : | ||
|  |           retriangulationThreshold(defaultTriangThreshold), rankTolerance(rankTol), | ||
|  |           linearizationThreshold(linThreshold), body_P_sensor_(body_P_sensor), | ||
|  |           state_(state), throwCheirality_(false), verboseCheirality_(false) {} | ||
|  | 
 | ||
|  | 
 | ||
|  |     /** Virtual destructor */ | ||
|  |     virtual ~SmartProjectionHessianFactor() {} | ||
|  | 
 | ||
|  |     /**
 | ||
|  |      * add a new measurement and pose key | ||
|  |      * @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement) | ||
|  |      * @param poseKey is the index corresponding to the camera observing the same landmark | ||
|  |      */ | ||
|  |     void add(const Point2 measured_i, const Key poseKey_i, const SharedNoiseModel noise_i, | ||
|  |         const boost::shared_ptr<CALIBRATION> K_i) { | ||
|  |       measured_.push_back(measured_i); | ||
|  |       keys_.push_back(poseKey_i); | ||
|  |       noise_.push_back(noise_i); | ||
|  |       K_all_.push_back(K_i); | ||
|  |     } | ||
|  | 
 | ||
|  |     void add(std::vector< Point2 > measurements, std::vector< Key > poseKeys, std::vector< SharedNoiseModel > noises, | ||
|  |         std::vector< boost::shared_ptr<CALIBRATION> > Ks) { | ||
|  |       for(size_t i = 0; i < measurements.size(); i++) { | ||
|  |         measured_.push_back(measurements.at(i)); | ||
|  |         keys_.push_back(poseKeys.at(i)); | ||
|  |         noise_.push_back(noises.at(i)); | ||
|  |         K_all_.push_back(Ks.at(i)); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     void add(std::vector< Point2 > measurements, std::vector< Key > poseKeys, const SharedNoiseModel noise, | ||
|  |         const boost::shared_ptr<CALIBRATION> K) { | ||
|  |       for(size_t i = 0; i < measurements.size(); i++) { | ||
|  |         measured_.push_back(measurements.at(i)); | ||
|  |         keys_.push_back(poseKeys.at(i)); | ||
|  |         noise_.push_back(noise); | ||
|  |         K_all_.push_back(K); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // This function checks if the new linearization point is the same as the one used for previous triangulation
 | ||
|  |     // (if not, a new triangulation is needed)
 | ||
|  |     static bool decideIfTriangulate(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double retriangulationThreshold) { | ||
|  |       // several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
 | ||
|  |       // Note that this is not yet "selecting linearization", that will come later, and we only check if the
 | ||
|  |       // current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
 | ||
|  | 
 | ||
|  |       // if we do not have a previous linearization point or the new linearization point includes more poses
 | ||
|  |       if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size())) | ||
|  |         return true; | ||
|  | 
 | ||
|  |       for(size_t i = 0; i < cameraPoses.size(); i++) { | ||
|  |           if (!cameraPoses[i].equals(oldPoses[i], retriangulationThreshold)) { | ||
|  |             return true; // at least two poses are different, hence we retriangulate
 | ||
|  |           } | ||
|  |       } | ||
|  |       return false; // if we arrive to this point all poses are the same and we don't need re-triangulation
 | ||
|  |     } | ||
|  | 
 | ||
|  |     // This function checks if the new linearization point is 'close'  to the previous one used for linearization
 | ||
|  |     // (if not, a new linearization is needed)
 | ||
|  |     static bool decideIfLinearize(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double linearizationThreshold) { | ||
|  |       // "selective linearization"
 | ||
|  |       // The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
 | ||
|  |       // (we only care about the "rigidity" of the poses, not about their absolute pose)
 | ||
|  | 
 | ||
|  |       // if we do not have a previous linearization point or the new linearization point includes more poses
 | ||
|  |       if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size())) | ||
|  |         return true; | ||
|  | 
 | ||
|  |       Pose3 firstCameraPose; | ||
|  |       Pose3 firstCameraPoseOld; | ||
|  | 
 | ||
|  |       for(size_t i = 0; i < cameraPoses.size(); i++) { | ||
|  | 
 | ||
|  |           if(i==0){ // we store the initial pose, this is useful for selective re-linearization
 | ||
|  |             firstCameraPose = cameraPoses[i]; | ||
|  |             firstCameraPoseOld = oldPoses[i]; | ||
|  |             continue; | ||
|  |           } | ||
|  | 
 | ||
|  |           // we compare the poses in the frame of the first pose
 | ||
|  |           Pose3 localCameraPose = firstCameraPose.between(cameraPoses[i]); | ||
|  |           Pose3 localCameraPoseOld = firstCameraPoseOld.between(oldPoses[i]); | ||
|  | 
 | ||
|  |           if (!localCameraPose.equals(localCameraPoseOld, linearizationThreshold)) { | ||
|  |             return true; // at least two "relative" poses are different, hence we re-linerize
 | ||
|  |           } | ||
|  |       } | ||
|  |       return false; // if we arrive to this point all poses are the same and we don't need re-linerize
 | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  |     /**
 | ||
|  |      * print | ||
|  |      * @param s optional string naming the factor | ||
|  |      * @param keyFormatter optional formatter useful for printing Symbols | ||
|  |      */ | ||
|  |     void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { | ||
|  |       std::cout << s << "SmartProjectionHessianFactor, z = \n "; | ||
|  |       BOOST_FOREACH(const Point2& p, measured_) { | ||
|  |         std::cout << "measurement, p = "<< p << std::endl; | ||
|  |       } | ||
|  |       BOOST_FOREACH(const SharedNoiseModel& noise_i, noise_) { | ||
|  |         noise_i->print("noise model = "); | ||
|  |       } | ||
|  |       if(this->body_P_sensor_){ | ||
|  |         this->body_P_sensor_->print("  sensor pose in body frame: "); | ||
|  |       } | ||
|  |       Base::print("", keyFormatter); | ||
|  |     } | ||
|  | 
 | ||
|  |     /// equals
 | ||
|  |     virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { | ||
|  |       const This *e = dynamic_cast<const This*>(&p); | ||
|  | 
 | ||
|  |       bool areMeasurementsEqual = true; | ||
|  |       for(size_t i = 0; i < measured_.size(); i++) { | ||
|  |         if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false) | ||
|  |           areMeasurementsEqual = false; | ||
|  |         break; | ||
|  |       } | ||
|  | 
 | ||
|  |       return e | ||
|  |           && Base::equals(p, tol) | ||
|  |           && areMeasurementsEqual | ||
|  |           //&& this->K_->equals(*e->K_all_, tol);
 | ||
|  |           && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); | ||
|  |     } | ||
|  | 
 | ||
|  |     /// get the dimension of the factor (number of rows on linearization)
 | ||
|  |     virtual size_t dim() const { | ||
|  |         return 6*keys_.size(); | ||
|  |     } | ||
|  | 
 | ||
|  |     /// linearize returns a Hessianfactor that is an approximation of error(p)
 | ||
|  |     virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values) const { | ||
|  | 
 | ||
|  |       bool blockwise = false;                  // the full matrix version in faster
 | ||
|  |       int dim_landmark = 3;                    // for degenerate instances this will become 2 (direction-only information)
 | ||
|  | 
 | ||
|  |       // Create structures for Hessian Factors
 | ||
|  |       unsigned int numKeys = keys_.size(); | ||
|  |       if(isDebug) {std::cout<< " numKeys = "<< numKeys<<std::endl; } | ||
|  |       std::vector<Index> js; | ||
|  |       std::vector<Matrix> Gs(numKeys*(numKeys+1)/2); | ||
|  |       std::vector<Vector> gs(numKeys); | ||
|  |       double f=0; | ||
|  | 
 | ||
|  |       // Collect all poses (Cameras)
 | ||
|  |       std::vector<Pose3> cameraPoses; | ||
|  |       BOOST_FOREACH(const Key& k, keys_) { | ||
|  |         Pose3 cameraPose; | ||
|  |         if(body_P_sensor_)    {   cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);} | ||
|  |         else                  { cameraPose = values.at<Pose3>(k);} | ||
|  |         cameraPoses.push_back(cameraPose); | ||
|  |       } | ||
|  | 
 | ||
|  |       if(cameraPoses.size() < 2){ // if we have a single pose the corresponding factor is uninformative
 | ||
|  |         state_->degenerate = true; | ||
|  |         BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6); | ||
|  |         BOOST_FOREACH(Vector& v, gs) v = zero(6); | ||
|  |         return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); // TODO: Debug condition, uncomment when fixed
 | ||
|  |       } | ||
|  | 
 | ||
|  |       bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold); | ||
|  | 
 | ||
|  |       if(retriangulate) {// we store the current poses used for triangulation
 | ||
|  |         state_->cameraPosesTriangulation = cameraPoses; | ||
|  |       } | ||
|  | 
 | ||
|  |       if (retriangulate) { | ||
|  |         // We triangulate the 3D position of the landmark
 | ||
|  |         try { | ||
|  |           state_->point = triangulatePoint3(cameraPoses, measured_, *K_all_.at(0), rankTolerance); | ||
|  |           state_->degenerate = false; | ||
|  |           state_->cheiralityException = false; | ||
|  |         } catch( TriangulationUnderconstrainedException& e) { | ||
|  |           // if TriangulationUnderconstrainedException can be
 | ||
|  |           // 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
 | ||
|  |           // 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
 | ||
|  |           // in the second case we want to use a rotation-only smart factor
 | ||
|  |           //std::cout << "Triangulation failed " << e.what() << std::endl; // point triangulated at infinity
 | ||
|  |           state_->degenerate = true; | ||
|  |           state_->cheiralityException = false; | ||
|  |         } catch( TriangulationCheiralityException& e) { | ||
|  |           // point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
 | ||
|  |           // we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
 | ||
|  |           //std::cout << e.what() << std::end;
 | ||
|  |           state_->cheiralityException = true; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       if (!manageDegeneracy && (state_->cheiralityException || state_->degenerate) ){ | ||
|  |         // std::cout << "In linearize: exception" << std::endl;
 | ||
|  |         BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6); | ||
|  |         BOOST_FOREACH(Vector& v, gs) v = zero(6); | ||
|  |         return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); | ||
|  |       } | ||
|  | 
 | ||
|  |       if (state_->cheiralityException || state_->degenerate){ // if we want to manage the exceptions with rotation-only factors
 | ||
|  |         state_->degenerate = true; | ||
|  |         dim_landmark = 2; | ||
|  |       } | ||
|  | 
 | ||
|  |       bool doLinearize; | ||
|  |       if (linearizationThreshold >= 0){//by convention if linearizationThreshold is negative we always relinearize
 | ||
|  |         // std::cout << "Temporary disabled" << std::endl;
 | ||
|  |         doLinearize = decideIfLinearize(cameraPoses, state_->cameraPosesLinearization, linearizationThreshold); | ||
|  |       } | ||
|  |       else{ | ||
|  |         doLinearize = true; | ||
|  |       } | ||
|  | 
 | ||
|  |       if (doLinearize) { | ||
|  |         state_->cameraPosesLinearization = cameraPoses; | ||
|  |       } | ||
|  | 
 | ||
|  |       if(!doLinearize){ // return the previous Hessian factor
 | ||
|  |         // std::cout << "Using stored factors :) " << std::endl;
 | ||
|  |         return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f)); | ||
|  |       } | ||
|  | 
 | ||
|  |       if (blockwise == false){ // version with full matrix multiplication
 | ||
|  |         // ==========================================================================================================
 | ||
|  |         Matrix Hx2 = zeros(2 * numKeys, 6 * numKeys); | ||
|  |         Matrix Hl2 = zeros(2 * numKeys, dim_landmark); | ||
|  |         Vector b2 = zero(2 * numKeys); | ||
|  | 
 | ||
|  |         if(state_->degenerate){ | ||
|  |           for(size_t i = 0; i < measured_.size(); i++) { | ||
|  |             Pose3 pose = cameraPoses.at(i); | ||
|  |             PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i)); | ||
|  |             if(i==0){ // first pose
 | ||
|  |               state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); | ||
|  |               // 3D parametrization of point at infinity: [px py 1]
 | ||
|  |               // std::cout << "point_ " << state_->point<< std::endl;
 | ||
|  |             } | ||
|  |             Matrix Hxi, Hli; | ||
|  |             Vector bi = -( camera.projectPointAtInfinity(state_->point,Hxi,Hli) - measured_.at(i) ).vector(); | ||
|  |             // std::cout << "Hxi \n" << Hxi<< std::endl;
 | ||
|  |             // std::cout << "Hli \n" << Hli<< std::endl;
 | ||
|  | 
 | ||
|  |             noise_.at(i)-> WhitenSystem(Hxi, Hli, bi); | ||
|  |             f += bi.squaredNorm(); | ||
|  | 
 | ||
|  |             Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; | ||
|  |             Hl2.block( 2*i, 0, 2, 2  ) = Hli; | ||
|  | 
 | ||
|  |             subInsert(b2,bi,2*i); | ||
|  |           } | ||
|  |           // std::cout << "Hx2 \n" << Hx2<< std::endl;
 | ||
|  |           // std::cout << "Hl2 \n" << Hl2<< std::endl;
 | ||
|  |         } | ||
|  |         else{ | ||
|  | 
 | ||
|  |           for(size_t i = 0; i < measured_.size(); i++) { | ||
|  |             Pose3 pose = cameraPoses.at(i); | ||
|  |             PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i)); | ||
|  |             Matrix Hxi, Hli; | ||
|  | 
 | ||
|  |             Vector bi; | ||
|  |             try { | ||
|  |               bi = -( camera.project(state_->point,Hxi,Hli) - measured_.at(i) ).vector(); | ||
|  |             } catch ( CheiralityException& e) { | ||
|  |               std::cout << "Cheirality exception " << state_->ID << std::endl; | ||
|  |               exit(EXIT_FAILURE); | ||
|  |             } | ||
|  |             noise_.at(i)-> WhitenSystem(Hxi, Hli, bi); | ||
|  |             f += bi.squaredNorm(); | ||
|  | 
 | ||
|  |             Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; | ||
|  |             Hl2.block( 2*i, 0, 2, 3  ) = Hli; | ||
|  | 
 | ||
|  |             subInsert(b2,bi,2*i); | ||
|  |           } | ||
|  | 
 | ||
|  |         } | ||
|  | 
 | ||
|  |         // Shur complement trick
 | ||
|  |         Matrix H(6 * numKeys, 6 * numKeys); | ||
|  |         Matrix C2; | ||
|  |         Vector gs_vector; | ||
|  | 
 | ||
|  |         C2.noalias() = (Hl2.transpose() * Hl2).inverse(); | ||
|  |         H.noalias() = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2)))); | ||
|  |         gs_vector.noalias() = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2)))); | ||
|  | 
 | ||
|  |         // Populate Gs and gs
 | ||
|  |         int GsCount2 = 0; | ||
|  |         for(size_t i1 = 0; i1 < numKeys; i1++) { | ||
|  |           gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6); | ||
|  | 
 | ||
|  |           for(size_t i2 = 0; i2 < numKeys; i2++) { | ||
|  |             if (i2 >= i1) { | ||
|  |               Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6); | ||
|  |               GsCount2++; | ||
|  |             } | ||
|  |           } | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       // ==========================================================================================================
 | ||
|  |       if(linearizationThreshold >= 0){ // if we do not use selective relinearization we don't need to store these variables
 | ||
|  |         state_->calculatedHessian = true; | ||
|  |         state_->Gs = Gs; | ||
|  |         state_->gs = gs; | ||
|  |         state_->f = f; | ||
|  |       } | ||
|  | 
 | ||
|  |       return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); | ||
|  |     } | ||
|  | 
 | ||
|  |     /**
 | ||
|  |      * Calculate the error of the factor. | ||
|  |      * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian. | ||
|  |      * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model | ||
|  |      * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5. | ||
|  |      */ | ||
|  |     virtual double error(const Values& values) const { | ||
|  |       if (this->active(values)) { | ||
|  |         double overallError=0; | ||
|  | 
 | ||
|  |         // Collect all poses (Cameras)
 | ||
|  |         std::vector<Pose3> cameraPoses; | ||
|  |         BOOST_FOREACH(const Key& k, keys_) { | ||
|  |           Pose3 cameraPose; | ||
|  |           if(body_P_sensor_)    {   cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);} | ||
|  |           else                         { cameraPose = values.at<Pose3>(k);} | ||
|  |           cameraPoses.push_back(cameraPose); | ||
|  | 
 | ||
|  |           if(0&& isDebug) {cameraPose.print("cameraPose = "); } | ||
|  |         } | ||
|  | 
 | ||
|  |         if(cameraPoses.size() < 2){ // if we have a single pose the corresponding factor is uninformative
 | ||
|  |           return 0.0; | ||
|  |         } | ||
|  | 
 | ||
|  |         bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold); | ||
|  | 
 | ||
|  |         if(retriangulate) {// we store the current poses used for triangulation
 | ||
|  |           state_->cameraPosesTriangulation = cameraPoses; | ||
|  |         } | ||
|  | 
 | ||
|  |         if (retriangulate) { | ||
|  |           // We triangulate the 3D position of the landmark
 | ||
|  |           try { | ||
|  |             state_->point = triangulatePoint3(cameraPoses, measured_, *K_all_.at(0), rankTolerance); | ||
|  |             state_->degenerate = false; | ||
|  |             state_->cheiralityException = false; | ||
|  |           } catch( TriangulationUnderconstrainedException& e) { | ||
|  |             // if TriangulationUnderconstrainedException can be
 | ||
|  |             // 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
 | ||
|  |             // 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
 | ||
|  |             // in the second case we want to use a rotation-only smart factor
 | ||
|  |             //std::cout << "Triangulation failed " << e.what() << std::endl; // point triangulated at infinity
 | ||
|  |             state_->degenerate = true; | ||
|  |             state_->cheiralityException = false; | ||
|  |           } catch( TriangulationCheiralityException& e) { | ||
|  |             // point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
 | ||
|  |             // we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
 | ||
|  |             //std::cout << e.what() << std::end;
 | ||
|  |             state_->cheiralityException = true; | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         if (!manageDegeneracy && (state_->cheiralityException || state_->degenerate) ){ | ||
|  |           // if we don't want to manage the exceptions we discard the factor
 | ||
|  |           // std::cout << "In error evaluation: exception" << std::endl;
 | ||
|  |           return 0.0; | ||
|  |         } | ||
|  | 
 | ||
|  |         if (state_->cheiralityException || state_->degenerate){ // if we want to manage the exceptions with rotation-only factors
 | ||
|  |           state_->degenerate = true; | ||
|  |         } | ||
|  | 
 | ||
|  |         if(state_->degenerate){ | ||
|  |           for(size_t i = 0; i < measured_.size(); i++) { | ||
|  |             Pose3 pose = cameraPoses.at(i); | ||
|  |             PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i)); | ||
|  |             if(i==0){ // first pose
 | ||
|  |               state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity
 | ||
|  |             } | ||
|  |             Point2 reprojectionError(camera.projectPointAtInfinity(state_->point) - measured_.at(i)); | ||
|  |             overallError +=  0.5 * noise_.at(i)->distance( reprojectionError.vector() ); | ||
|  |             //overallError +=  reprojectionError.vector().norm();
 | ||
|  |           } | ||
|  |           return overallError; | ||
|  |         } | ||
|  |         else{ | ||
|  |           for(size_t i = 0; i < measured_.size(); i++) { | ||
|  |             Pose3 pose = cameraPoses.at(i); | ||
|  |             PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i)); | ||
|  | 
 | ||
|  |             try { | ||
|  |               Point2 reprojectionError(camera.project(state_->point) - measured_.at(i)); | ||
|  |               //std::cout << "Reprojection error: " << reprojectionError << std::endl;
 | ||
|  |               overallError += 0.5 * noise_.at(i)->distance( reprojectionError.vector() ); | ||
|  |               //overallError += reprojectionError.vector().norm();
 | ||
|  |             } catch ( CheiralityException& e) { | ||
|  |               std::cout << "Cheirality exception " << state_->ID << std::endl; | ||
|  |               exit(EXIT_FAILURE); | ||
|  |             } | ||
|  |           } | ||
|  |           return overallError; | ||
|  |         } | ||
|  |       } else { // else of active flag
 | ||
|  |         return 0.0; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     /** return the measurements */ | ||
|  |     const Vector& measured() const { | ||
|  |       return measured_; | ||
|  |     } | ||
|  | 
 | ||
|  |     /** return the noise model */ | ||
|  |     const SharedNoiseModel& noise() const { | ||
|  |       return noise_;  | ||
|  |     } | ||
|  | 
 | ||
|  |     /** return the landmark */ | ||
|  |     boost::optional<Point3> point() const { | ||
|  |       return state_->point; | ||
|  |     } | ||
|  | 
 | ||
|  |     /** return the calibration object */ | ||
|  |     inline const boost::shared_ptr<CALIBRATION> calibration() const { | ||
|  |       return K_all_; | ||
|  |     } | ||
|  | 
 | ||
|  |     /** return verbosity */ | ||
|  |     inline bool verboseCheirality() const { return verboseCheirality_; } | ||
|  | 
 | ||
|  |     /** return flag for throwing cheirality exceptions */ | ||
|  |     inline bool throwCheirality() const { return throwCheirality_; } | ||
|  | 
 | ||
|  |   private: | ||
|  | 
 | ||
|  |     /// Serialization function
 | ||
|  |     friend class boost::serialization::access; | ||
|  |     template<class ARCHIVE> | ||
|  |     void serialize(ARCHIVE & ar, const unsigned int version) { | ||
|  |       ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); | ||
|  |       ar & BOOST_SERIALIZATION_NVP(measured_); | ||
|  |       ar & BOOST_SERIALIZATION_NVP(K_all_); | ||
|  |       ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); | ||
|  |       ar & BOOST_SERIALIZATION_NVP(throwCheirality_); | ||
|  |       ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); | ||
|  |     } | ||
|  | 
 | ||
|  |   }; | ||
|  | 
 | ||
|  | } // \ namespace gtsam
 |