| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * NoiseModel.h | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *  Created on: Jan 13, 2010 | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |  *      Author: Richard Roberts | 
					
						
							|  |  |  |  *      Author: Frank Dellaert | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 11:29:23 +08:00
										 |  |  | #include <boost/shared_ptr.hpp>
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | #include "Testable.h"
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | #include "Vector.h"
 | 
					
						
							|  |  |  | #include "Matrix.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-21 02:32:48 +08:00
										 |  |  | namespace gtsam { | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 	class SharedDiagonal; // forward declare, defined at end
 | 
					
						
							| 
									
										
										
										
											2010-01-21 02:32:48 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 	namespace noiseModel { | 
					
						
							| 
									
										
										
										
											2010-01-20 03:06:02 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		/**
 | 
					
						
							|  |  |  | 		 * noiseModel::Base is the abstract base class for all noise models. | 
					
						
							|  |  |  | 		 * | 
					
						
							|  |  |  | 		 * Noise models must implement a 'whiten' function to normalize an error vector, | 
					
						
							|  |  |  | 		 * and an 'unwhiten' function to unnormalize an error vector. | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		class Base : public Testable<Base> { | 
					
						
							| 
									
										
										
										
											2010-01-17 09:28:15 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		protected: | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			size_t dim_; | 
					
						
							| 
									
										
										
										
											2010-01-23 07:00:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		public: | 
					
						
							| 
									
										
										
										
											2010-01-23 07:00:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			Base(size_t dim):dim_(dim) {} | 
					
						
							|  |  |  | 			virtual ~Base() {} | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Dimensionality | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			inline size_t dim() const { return dim_;} | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Whiten an error vector. | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual Vector whiten(const Vector& v) const = 0; | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Unwhiten an error vector. | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual Vector unwhiten(const Vector& v) const = 0; | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			/** in-place whiten, override if can be done more efficiently */ | 
					
						
							|  |  |  | 			virtual void whitenInPlace(Vector& v) const { | 
					
						
							|  |  |  | 				v = whiten(v); | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			/** in-place unwhiten, override if can be done more efficiently */ | 
					
						
							|  |  |  | 			virtual void unwhitenInPlace(Vector& v) const { | 
					
						
							|  |  |  | 				v = unwhiten(v); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		}; | 
					
						
							| 
									
										
										
										
											2010-01-29 01:21:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		/**
 | 
					
						
							|  |  |  | 		 * Gaussian implements the mathematical model | 
					
						
							|  |  |  | 		 *  |R*x|^2 = |y|^2 with R'*R=inv(Sigma) | 
					
						
							|  |  |  | 		 * where | 
					
						
							|  |  |  | 		 *   y = whiten(x) = R*x | 
					
						
							|  |  |  | 		 *   x = unwhiten(x) = inv(R)*y | 
					
						
							|  |  |  | 		 * as indeed | 
					
						
							|  |  |  | 		 *   |y|^2 = y'*y = x'*R'*R*x | 
					
						
							|  |  |  | 		 * Various derived classes are available that are more efficient. | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		struct Gaussian: public Base { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		private: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// TODO: store as boost upper-triangular or whatever is passed from above
 | 
					
						
							|  |  |  | 			/* Matrix square root of information matrix (R) */ | 
					
						
							|  |  |  | 			boost::optional<Matrix> sqrt_information_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Return R itself, but note that Whiten(H) is cheaper than R*H | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			const Matrix& thisR() const { | 
					
						
							|  |  |  | 				// should never happen
 | 
					
						
							|  |  |  | 				if (!sqrt_information_) throw std::runtime_error("Gaussian: has no R matrix"); | 
					
						
							|  |  |  | 				return *sqrt_information_; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		protected: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/** protected constructor takes square root information matrix */ | 
					
						
							|  |  |  | 			Gaussian(size_t dim, const boost::optional<Matrix>& sqrt_information = boost::none) : | 
					
						
							|  |  |  | 				Base(dim), sqrt_information_(sqrt_information) { | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			typedef boost::shared_ptr<Gaussian> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A Gaussian noise model created by specifying a square root information matrix. | 
					
						
							|  |  |  | 			 * @param smart, check if can be simplified to derived class | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr SqrtInformation(const Matrix& R) { | 
					
						
							|  |  |  | 				return shared_ptr(new Gaussian(R.size1(),R)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A Gaussian noise model created by specifying a covariance matrix. | 
					
						
							|  |  |  | 			 * @param smart, check if can be simplified to derived class | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Covariance(const Matrix& covariance, bool smart=false); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A Gaussian noise model created by specifying an information matrix. | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Information(const Matrix& Q)  { | 
					
						
							|  |  |  | 				return shared_ptr(new Gaussian(Q.size1(),square_root_positive(Q))); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			virtual void print(const std::string& name) const; | 
					
						
							|  |  |  | 			virtual bool equals(const Base& expected, double tol) const; | 
					
						
							|  |  |  | 			virtual Vector whiten(const Vector& v) const; | 
					
						
							|  |  |  | 			virtual Vector unwhiten(const Vector& v) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Mahalanobis distance v'*R'*R*v = <R*v,R*v> | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual double Mahalanobis(const Vector& v) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Multiply a derivative with R (derivative of whiten) | 
					
						
							|  |  |  | 			 * Equivalent to whitening each column of the input matrix. | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual Matrix Whiten(const Matrix& H) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * In-place version | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual void WhitenInPlace(Matrix& H) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Whiten a system, in place as well | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			inline void WhitenSystem(Matrix& A, Vector& b) const { | 
					
						
							|  |  |  | 				WhitenInPlace(A); | 
					
						
							|  |  |  | 				whitenInPlace(b); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Apply appropriately weighted QR factorization to the system [A b] | 
					
						
							|  |  |  | 			 *               Q'  *   [A b]  =  [R d] | 
					
						
							|  |  |  | 			 * Dimensions: (r*m) * m*(n+1) = r*(n+1) | 
					
						
							|  |  |  | 			 * @param Ab is the m*(n+1) augmented system matrix [A b] | 
					
						
							|  |  |  | 			 * @return in-place QR factorization [R d]. Below-diagonal is undefined !!!!! | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual SharedDiagonal QR(Matrix& Ab) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Return R itself, but note that Whiten(H) is cheaper than R*H | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual Matrix R() const { return thisR();} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Simple check for constrained-ness | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual bool isConstrained() const {return false;} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		}; // Gaussian
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// FD: does not work, ambiguous overload :-(
 | 
					
						
							|  |  |  | 		// inline Vector operator*(const Gaussian& R, const Vector& v) {return R.whiten(v);}
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		/**
 | 
					
						
							|  |  |  | 		 * A diagonal noise model implements a diagonal covariance matrix, with the | 
					
						
							|  |  |  | 		 * elements of the diagonal specified in a Vector.  This class has no public | 
					
						
							|  |  |  | 		 * constructors, instead, use the static constructor functions Sigmas etc... | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		class Diagonal : public Gaussian { | 
					
						
							|  |  |  | 		protected: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/** sigmas and reciprocal */ | 
					
						
							|  |  |  | 			Vector sigmas_, invsigmas_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/** protected constructor takes sigmas */ | 
					
						
							|  |  |  | 			Diagonal(const Vector& sigmas); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			typedef boost::shared_ptr<Diagonal> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A diagonal noise model created by specifying a Vector of sigmas, i.e. | 
					
						
							|  |  |  | 			 * standard devations, the diagonal of the square root covariance matrix. | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Sigmas(const Vector& sigmas, bool smart=false); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A diagonal noise model created by specifying a Vector of variances, i.e. | 
					
						
							|  |  |  | 			 * i.e. the diagonal of the covariance matrix. | 
					
						
							|  |  |  | 			 * @param smart, check if can be simplified to derived class | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Variances(const Vector& variances, bool smart = false); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A diagonal noise model created by specifying a Vector of precisions, i.e. | 
					
						
							|  |  |  | 			 * i.e. the diagonal of the information matrix, i.e., weights | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Precisions(const Vector& precisions) { | 
					
						
							|  |  |  | 				return Variances(reciprocal(precisions)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			virtual void print(const std::string& name) const; | 
					
						
							|  |  |  | 			virtual Vector whiten(const Vector& v) const; | 
					
						
							|  |  |  | 			virtual Vector unwhiten(const Vector& v) const; | 
					
						
							|  |  |  | 			virtual Matrix Whiten(const Matrix& H) const; | 
					
						
							|  |  |  | 			virtual void WhitenInPlace(Matrix& H) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Return standard deviations (sqrt of diagonal) | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			inline const Vector& sigmas() const { return sigmas_; } | 
					
						
							|  |  |  | 			inline double sigma(size_t i) const { return sigmas_(i); } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * generate random variate | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual Vector sample() const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Return R itself, but note that Whiten(H) is cheaper than R*H | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual Matrix R() const { | 
					
						
							|  |  |  | 				return diag(invsigmas_); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		}; // Diagonal
 | 
					
						
							| 
									
										
										
										
											2010-01-19 12:38:58 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		/**
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		 * A Constrained constrained model is a specialization of Diagonal which allows | 
					
						
							|  |  |  | 		 * some or all of the sigmas to be zero, forcing the error to be zero there. | 
					
						
							|  |  |  | 		 * All other Gaussian models are guaranteed to have a non-singular square-root | 
					
						
							|  |  |  | 		 * information matrix, but this class is specifically equipped to deal with | 
					
						
							|  |  |  | 		 * singular noise models, specifically: whiten will return zero on those | 
					
						
							|  |  |  | 		 * components that have zero sigma *and* zero error, infinity otherwise. | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		class Constrained : public Diagonal { | 
					
						
							|  |  |  | 		protected: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Constrained does not have member variables
 | 
					
						
							|  |  |  | 			// Instead (possibly zero) sigmas are stored in Diagonal Base class
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/** protected constructor takes sigmas */ | 
					
						
							|  |  |  | 			Constrained(const Vector& sigmas) :Diagonal(sigmas) {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			typedef boost::shared_ptr<Constrained> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A diagonal noise model created by specifying a Vector of | 
					
						
							|  |  |  | 			 * standard devations, some of which might be zero | 
					
						
							|  |  |  | 			 * TODO: make smart - check for zeros | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr MixedSigmas(const Vector& sigmas, bool smart = false) { | 
					
						
							|  |  |  | 				return shared_ptr(new Constrained(sigmas)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A diagonal noise model created by specifying a Vector of | 
					
						
							|  |  |  | 			 * standard devations, some of which might be zero | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr MixedVariances(const Vector& variances) { | 
					
						
							|  |  |  | 				return shared_ptr(new Constrained(esqrt(variances))); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * A diagonal noise model created by specifying a Vector of | 
					
						
							|  |  |  | 			 * precisions, some of which might be inf | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr MixedPrecisions(const Vector& precisions) { | 
					
						
							|  |  |  | 				return MixedVariances(reciprocal(precisions)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Fully constrained. TODO: subclass ? | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr All(size_t dim) { | 
					
						
							|  |  |  | 				return MixedSigmas(repeat(dim,0)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			virtual void print(const std::string& name) const; | 
					
						
							|  |  |  | 			virtual Vector whiten(const Vector& v) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Whitening Jacobians does not make sense for possibly constrained
 | 
					
						
							|  |  |  | 			// noise model and will throw an exception.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			virtual Matrix Whiten(const Matrix& H) const; | 
					
						
							|  |  |  | 			virtual void WhitenInPlace(Matrix& H) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Apply QR factorization to the system [A b], taking into account constraints | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual SharedDiagonal QR(Matrix& Ab) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Check constrained is always true | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual bool isConstrained() const {return true;} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		}; // Constrained
 | 
					
						
							| 
									
										
										
										
											2010-01-19 12:38:58 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		/**
 | 
					
						
							|  |  |  | 		 * An isotropic noise model corresponds to a scaled diagonal covariance | 
					
						
							|  |  |  | 		 * To construct, use one of the static methods | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		class Isotropic : public Diagonal { | 
					
						
							|  |  |  | 		protected: | 
					
						
							|  |  |  | 			double sigma_, invsigma_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/** protected constructor takes sigma */ | 
					
						
							|  |  |  | 			Isotropic(size_t dim, double sigma) : | 
					
						
							|  |  |  | 				Diagonal(repeat(dim, sigma)),sigma_(sigma),invsigma_(1.0/sigma) {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			typedef boost::shared_ptr<Isotropic> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * An isotropic noise model created by specifying a standard devation sigma | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Sigma(size_t dim, double sigma) { | 
					
						
							|  |  |  | 				return shared_ptr(new Isotropic(dim, sigma)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * An isotropic noise model created by specifying a variance = sigma^2. | 
					
						
							|  |  |  | 			 * @param smart, check if can be simplified to derived class | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Variance(size_t dim, double variance, bool smart = false); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * An isotropic noise model created by specifying a precision | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Precision(size_t dim, double precision)  { | 
					
						
							|  |  |  | 				return Variance(dim, 1.0/precision); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			virtual void print(const std::string& name) const; | 
					
						
							|  |  |  | 			virtual double Mahalanobis(const Vector& v) const; | 
					
						
							|  |  |  | 			virtual Vector whiten(const Vector& v) const; | 
					
						
							|  |  |  | 			virtual Vector unwhiten(const Vector& v) const; | 
					
						
							|  |  |  | 			virtual Matrix Whiten(const Matrix& H) const; | 
					
						
							|  |  |  | 			virtual void WhitenInPlace(Matrix& H) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Return standard deviation | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			inline double sigma() const { return sigma_; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * generate random variate | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			virtual Vector sample() const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		}; | 
					
						
							| 
									
										
										
										
											2010-01-21 16:31:18 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-23 07:00:35 +08:00
										 |  |  | 		/**
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		 * Unit: i.i.d. unit-variance noise on all m dimensions. | 
					
						
							| 
									
										
										
										
											2010-01-23 07:00:35 +08:00
										 |  |  | 		 */ | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		class Unit : public Isotropic { | 
					
						
							|  |  |  | 		protected: | 
					
						
							| 
									
										
										
										
											2010-01-27 12:39:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			Unit(size_t dim): Isotropic(dim,1.0) {} | 
					
						
							| 
									
										
										
										
											2010-01-27 12:39:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 		public: | 
					
						
							| 
									
										
										
										
											2010-01-27 12:39:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			typedef boost::shared_ptr<Unit> shared_ptr; | 
					
						
							| 
									
										
										
										
											2010-01-27 12:39:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			/**
 | 
					
						
							|  |  |  | 			 * Create a unit covariance noise model | 
					
						
							|  |  |  | 			 */ | 
					
						
							|  |  |  | 			static shared_ptr Create(size_t dim) { | 
					
						
							|  |  |  | 				return shared_ptr(new Unit(dim)); | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2010-01-27 12:39:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 			virtual void print(const std::string& name) const; | 
					
						
							|  |  |  | 			virtual double Mahalanobis(const Vector& v) const {return inner_prod(v,v); } | 
					
						
							|  |  |  | 			virtual Vector whiten(const Vector& v) const { return v; } | 
					
						
							|  |  |  | 			virtual Vector unwhiten(const Vector& v) const { return v; } | 
					
						
							|  |  |  | 			virtual Matrix Whiten(const Matrix& H) const { return H; } | 
					
						
							|  |  |  | 			virtual void WhitenInPlace(Matrix& H) const {} | 
					
						
							|  |  |  | 		}; | 
					
						
							| 
									
										
										
										
											2010-01-27 12:39:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 	} // namespace noiseModel
 | 
					
						
							| 
									
										
										
										
											2010-01-27 12:39:35 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-02-09 06:21:56 +08:00
										 |  |  | 	using namespace noiseModel; | 
					
						
							| 
									
										
										
										
											2010-01-27 12:39:35 +08:00
										 |  |  | } // namespace gtsam
 |