| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * @file    Rot3.cpp | 
					
						
							|  |  |  |  * @brief   Rotation (internal: 3*3 matrix representation*) | 
					
						
							|  |  |  |  * @author  Alireza Fathi | 
					
						
							|  |  |  |  * @author  Christian Potthast | 
					
						
							|  |  |  |  * @author  Frank Dellaert | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "Rot3.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-10-27 03:26:51 +08:00
										 |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	bool Rot3::equals(const Rot3 & R, double tol) const { | 
					
						
							|  |  |  | 		return equal_with_abs_tol(matrix(), R.matrix(), tol); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	/** faster than below ?                                                      */ | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Rot3 rodriguez(const Vector& w, double t) { | 
					
						
							|  |  |  | 		double l_w = 0.0; | 
					
						
							|  |  |  | 		for (int i = 0; i < 3; i++) | 
					
						
							|  |  |  | 			l_w += pow(w(i), 2.0); | 
					
						
							|  |  |  | 		if (l_w != 1.0) throw domain_error("rodriguez: length of w should be 1"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		double ct = cos(t), st = sin(t); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-09-04 01:08:52 +08:00
										 |  |  | 		Point3 r1 = Point3(ct + w(0) * w(0) * (1 - ct), w(2) * st + w(0) * w(1) * (1 - ct), -w(1) * st + w(0) * w(2) * (1 - ct)); | 
					
						
							|  |  |  | 		Point3 r2 = Point3(w(1) * w(0) * (1 - ct) - w(2) * st, w(1) * w(1) * (1 - ct) + ct, w(1) * w(2) * (1 - ct) + w(0) * st); | 
					
						
							|  |  |  | 		Point3 r3 = Point3(w(1) * st + w(2) * w(0) * (1 - ct), -w(0) * st + w(2) * w(1) * (1 - ct), ct + w(2) * w(2) * (1 - ct)); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-09-04 01:43:02 +08:00
										 |  |  | 		return Rot3(r1, r2, r3); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Rot3 rodriguez(double wx, double wy, double wz) { | 
					
						
							|  |  |  | 		Matrix J = skewSymmetric(wx, wy, wz); | 
					
						
							|  |  |  | 		double t2 = wx * wx + wy * wy + wz * wz; | 
					
						
							| 
									
										
										
										
											2009-09-16 10:20:57 +08:00
										 |  |  | 		if (t2 < 1e-10) return Rot3(); | 
					
						
							| 
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 |  |  | 		double t = sqrt(t2); | 
					
						
							|  |  |  | 		Matrix R = eye(3, 3) + sin(t) / t * J + (1.0 - cos(t)) / t2 * (J * J); | 
					
						
							|  |  |  | 		return R; // matrix constructor will be tripped
 | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Rot3 rodriguez(const Vector& v) { | 
					
						
							|  |  |  | 		return rodriguez(v(0), v(1), v(2)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Rot3 exmap(const Rot3& R, const Vector& v) { | 
					
						
							|  |  |  | 		return rodriguez(v) * R; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Rot3 Rot3::exmap(const Vector& v) const { | 
					
						
							|  |  |  | 		if (zero(v)) return (*this); | 
					
						
							|  |  |  | 		return rodriguez(v) * (*this); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Point3 rotate(const Rot3& R, const Point3& p) { | 
					
						
							|  |  |  | 		return R * p; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Matrix Drotate1(const Rot3& R, const Point3& p) { | 
					
						
							|  |  |  | 		Point3 q = R * p; | 
					
						
							|  |  |  | 		return skewSymmetric(-q.x(), -q.y(), -q.z()); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Matrix Drotate2(const Rot3& R) { | 
					
						
							|  |  |  | 		return R.matrix(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Point3 unrotate(const Rot3& R, const Point3& p) { | 
					
						
							|  |  |  | 		return R.unrotate(p); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	/** see libraries/caml/geometry/math.lyx, derivative of unrotate              */ | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Matrix Dunrotate1(const Rot3 & R, const Point3 & p) { | 
					
						
							|  |  |  | 		Point3 q = R.unrotate(p); | 
					
						
							|  |  |  | 		return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Matrix Dunrotate2(const Rot3 & R) { | 
					
						
							|  |  |  | 		return R.transpose(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	/** This function receives a rotation 3 by 3 matrix and returns 3 rotation angles.
 | 
					
						
							|  |  |  | 	 *  The implementation is based on the algorithm in multiple view geometry | 
					
						
							|  |  |  | 	 *  the function returns a vector that its arguments are: thetax, thetay, thetaz in radians. | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 	/* ************************************************************************* */ | 
					
						
							|  |  |  | 	Vector RQ(Matrix R) { | 
					
						
							|  |  |  | 		double Cx = R(2, 2) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow( | 
					
						
							|  |  |  | 				(double) (R(2, 1)), 2.0)))); //cosX
 | 
					
						
							|  |  |  | 		double Sx = -R(2, 1) / (double) ((sqrt(pow((double) (R(2, 2)), 2.0) + pow( | 
					
						
							|  |  |  | 				(double) (R(2, 1)), 2.0)))); //sinX
 | 
					
						
							|  |  |  | 		Matrix Qx(3, 3); | 
					
						
							|  |  |  | 		for (int i = 0; i < 3; i++) | 
					
						
							|  |  |  | 			for (int j = 0; j < 3; j++) | 
					
						
							|  |  |  | 				Qx(i, j) = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		Qx(0, 0) = 1; | 
					
						
							|  |  |  | 		Qx(1, 1) = Cx; | 
					
						
							|  |  |  | 		Qx(1, 2) = -Sx; | 
					
						
							|  |  |  | 		Qx(2, 1) = Sx; | 
					
						
							|  |  |  | 		Qx(2, 2) = Cx; | 
					
						
							|  |  |  | 		R = R * Qx; | 
					
						
							|  |  |  | 		double Cy = R(2, 2) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R( | 
					
						
							|  |  |  | 				2, 0)), 2.0))); //cosY
 | 
					
						
							|  |  |  | 		double Sy = R(2, 0) / (sqrt(pow((double) (R(2, 2)), 2.0) + pow((double) (R( | 
					
						
							|  |  |  | 				2, 0)), 2.0))); //sinY
 | 
					
						
							|  |  |  | 		Matrix Qy(3, 3); | 
					
						
							|  |  |  | 		for (int i = 0; i < 3; i++) | 
					
						
							|  |  |  | 			for (int j = 0; j < 3; j++) | 
					
						
							|  |  |  | 				Qy(i, j) = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		Qy(0, 0) = Cy; | 
					
						
							|  |  |  | 		Qy(0, 2) = Sy; | 
					
						
							|  |  |  | 		Qy(1, 1) = 1; | 
					
						
							|  |  |  | 		Qy(2, 0) = -Sy; | 
					
						
							|  |  |  | 		Qy(2, 2) = Cy; | 
					
						
							|  |  |  | 		R = R * Qy; | 
					
						
							|  |  |  | 		double Cz = R(1, 1) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow((double) (R( | 
					
						
							|  |  |  | 				1, 0)), 2.0))); //cosZ
 | 
					
						
							|  |  |  | 		double Sz = -R(1, 0) / (sqrt(pow((double) (R(1, 1)), 2.0) + pow( | 
					
						
							|  |  |  | 				(double) (R(1, 0)), 2.0)));//sinZ
 | 
					
						
							|  |  |  | 		Matrix Qz(3, 3); | 
					
						
							|  |  |  | 		for (int i = 0; i < 3; i++) | 
					
						
							|  |  |  | 			for (int j = 0; j < 3; j++) | 
					
						
							|  |  |  | 				Qz(i, j) = 0; | 
					
						
							|  |  |  | 		Qz(0, 0) = Cz; | 
					
						
							|  |  |  | 		Qz(0, 1) = -Sz; | 
					
						
							|  |  |  | 		Qz(1, 0) = Sz; | 
					
						
							|  |  |  | 		Qz(1, 1) = Cz; | 
					
						
							|  |  |  | 		Qz(2, 2) = 1; | 
					
						
							|  |  |  | 		R = R * Qz; | 
					
						
							|  |  |  | 		double pi = atan2(sqrt(2.0) / 2.0, sqrt(2.0) / 2.0) * 4.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		Vector result(3); | 
					
						
							|  |  |  | 		result(0) = -atan2(Sx, Cx); | 
					
						
							|  |  |  | 		result(1) = -atan2(Sy, Cy); | 
					
						
							|  |  |  | 		result(2) = -atan2(Sz, Cz); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return result; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } // namespace gtsam
 |