149 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
		
		
			
		
	
	
			149 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
| 
								 | 
							
								/* ----------------------------------------------------------------------------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
							 | 
						||
| 
								 | 
							
								 * Atlanta, Georgia 30332-0415
							 | 
						||
| 
								 | 
							
								 * All Rights Reserved
							 | 
						||
| 
								 | 
							
								 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 * See LICENSE for the license information
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 * -------------------------------------------------------------------------- */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * @file PartialPriorFactor.h
							 | 
						||
| 
								 | 
							
								 * @brief A simple prior factor that allows for setting a prior only on a part of linear parameters
							 | 
						||
| 
								 | 
							
								 * @author Alex Cunningham
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#pragma once
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <gtsam/nonlinear/NonlinearFactor.h>
							 | 
						||
| 
								 | 
							
								#include <gtsam/base/Lie.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace gtsam {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									/**
							 | 
						||
| 
								 | 
							
									 * A class for a soft partial prior on any Lie type, with a mask over Expmap
							 | 
						||
| 
								 | 
							
									 * parameters. Note that this will use Logmap() to find a tangent space parameterization
							 | 
						||
| 
								 | 
							
									 * for the variable attached, so this may fail for highly nonlinear manifolds.
							 | 
						||
| 
								 | 
							
									 *
							 | 
						||
| 
								 | 
							
									 * The prior vector used in this factor is stored in compressed form, such that
							 | 
						||
| 
								 | 
							
									 * it only contains values for measurements that are to be compared, and they are in
							 | 
						||
| 
								 | 
							
									 * the same order as VALUE::Logmap().  The mask will determine which components to extract
							 | 
						||
| 
								 | 
							
									 * in the error function.
							 | 
						||
| 
								 | 
							
									 *
							 | 
						||
| 
								 | 
							
									 * For practical use, it would be good to subclass this factor and have the class type
							 | 
						||
| 
								 | 
							
									 * construct the mask.
							 | 
						||
| 
								 | 
							
									 * @tparam VALUE is the type of variable the prior effects
							 | 
						||
| 
								 | 
							
									 */
							 | 
						||
| 
								 | 
							
									template<class VALUE>
							 | 
						||
| 
								 | 
							
									class PartialPriorFactor: public NoiseModelFactor1<VALUE> {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									public:
							 | 
						||
| 
								 | 
							
										typedef VALUE T;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									protected:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// Concept checks on the variable type - currently requires Lie
							 | 
						||
| 
								 | 
							
										GTSAM_CONCEPT_LIE_TYPE(VALUE)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										typedef NoiseModelFactor1<VALUE> Base;
							 | 
						||
| 
								 | 
							
										typedef PartialPriorFactor<VALUE> This;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										Vector prior_;             ///< measurement on tangent space parameters, in compressed form
							 | 
						||
| 
								 | 
							
										std::vector<size_t> mask_; ///< indices of values to constrain in compressed prior vector
							 | 
						||
| 
								 | 
							
										Matrix H_; 								 ///< Constant Jacobian - computed at creation
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** default constructor - only use for serialization */
							 | 
						||
| 
								 | 
							
										PartialPriorFactor() {}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/**
							 | 
						||
| 
								 | 
							
										 * constructor with just minimum requirements for a factor - allows more
							 | 
						||
| 
								 | 
							
										 * computation in the constructor.  This should only be used by subclasses
							 | 
						||
| 
								 | 
							
										 */
							 | 
						||
| 
								 | 
							
										PartialPriorFactor(Key key, const SharedNoiseModel& model)
							 | 
						||
| 
								 | 
							
										  : Base(model, key) {}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									public:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										virtual ~PartialPriorFactor() {}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** Single Element Constructor: acts on a single parameter specified by idx */
							 | 
						||
| 
								 | 
							
										PartialPriorFactor(Key key, size_t idx, double prior, const SharedNoiseModel& model) :
							 | 
						||
| 
								 | 
							
											Base(model, key), prior_(Vector_(1, prior)), mask_(1, idx), H_(zeros(1, T::Dim())) {
							 | 
						||
| 
								 | 
							
											assert(model->dim() == 1);
							 | 
						||
| 
								 | 
							
											this->fillH();
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** Indices Constructor: specify the mask with a set of indices */
							 | 
						||
| 
								 | 
							
										PartialPriorFactor(Key key, const std::vector<size_t>& mask, const Vector& prior,
							 | 
						||
| 
								 | 
							
												const SharedNoiseModel& model) :
							 | 
						||
| 
								 | 
							
											Base(model, key), prior_(prior), mask_(mask), H_(zeros(mask.size(), T::Dim())) {
							 | 
						||
| 
								 | 
							
											assert((size_t)prior_.size() == mask.size());
							 | 
						||
| 
								 | 
							
											assert(model->dim() == (size_t) prior.size());
							 | 
						||
| 
								 | 
							
											this->fillH();
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/// @return a deep copy of this factor
							 | 
						||
| 
								 | 
							
								    virtual gtsam::NonlinearFactor::shared_ptr clone() const {
							 | 
						||
| 
								 | 
							
										  return boost::static_pointer_cast<gtsam::NonlinearFactor>(
							 | 
						||
| 
								 | 
							
										      gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** implement functions needed for Testable */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** print */
							 | 
						||
| 
								 | 
							
										virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
							 | 
						||
| 
								 | 
							
											Base::print(s, keyFormatter);
							 | 
						||
| 
								 | 
							
											gtsam::print(prior_, "prior");
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** equals */
							 | 
						||
| 
								 | 
							
										virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
							 | 
						||
| 
								 | 
							
											const This *e = dynamic_cast<const This*> (&expected);
							 | 
						||
| 
								 | 
							
											return e != NULL && Base::equals(*e, tol) &&
							 | 
						||
| 
								 | 
							
													gtsam::equal_with_abs_tol(this->prior_, e->prior_, tol) &&
							 | 
						||
| 
								 | 
							
													this->mask_ == e->mask_;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** implement functions needed to derive from Factor */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** vector of errors */
							 | 
						||
| 
								 | 
							
										Vector evaluateError(const T& p, boost::optional<Matrix&> H = boost::none) const {
							 | 
						||
| 
								 | 
							
											if (H) (*H) = H_;
							 | 
						||
| 
								 | 
							
											// FIXME: this was originally the generic retraction - may not produce same results
							 | 
						||
| 
								 | 
							
											Vector full_logmap = T::Logmap(p);
							 | 
						||
| 
								 | 
							
								//			Vector full_logmap = T::identity().localCoordinates(p); // Alternate implementation
							 | 
						||
| 
								 | 
							
											Vector masked_logmap = zero(this->dim());
							 | 
						||
| 
								 | 
							
											for (size_t i=0; i<mask_.size(); ++i)
							 | 
						||
| 
								 | 
							
												masked_logmap(i) = full_logmap(mask_[i]);
							 | 
						||
| 
								 | 
							
											return masked_logmap - prior_;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// access
							 | 
						||
| 
								 | 
							
										const Vector& prior() const { return prior_; }
							 | 
						||
| 
								 | 
							
										const std::vector<bool>& mask() const { return  mask_; }
							 | 
						||
| 
								 | 
							
										const Matrix& H() const { return H_; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									protected:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										/** Constructs the jacobian matrix in place */
							 | 
						||
| 
								 | 
							
										void fillH() {
							 | 
						||
| 
								 | 
							
											for (size_t i=0; i<mask_.size(); ++i)
							 | 
						||
| 
								 | 
							
												H_(i, mask_[i]) = 1.0;
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									private:
							 | 
						||
| 
								 | 
							
										/** Serialization function */
							 | 
						||
| 
								 | 
							
										friend class boost::serialization::access;
							 | 
						||
| 
								 | 
							
										template<class ARCHIVE>
							 | 
						||
| 
								 | 
							
										void serialize(ARCHIVE & ar, const unsigned int version) {
							 | 
						||
| 
								 | 
							
											ar & boost::serialization::make_nvp("NoiseModelFactor1",
							 | 
						||
| 
								 | 
							
													boost::serialization::base_object<Base>(*this));
							 | 
						||
| 
								 | 
							
											ar & BOOST_SERIALIZATION_NVP(prior_);
							 | 
						||
| 
								 | 
							
											ar & BOOST_SERIALIZATION_NVP(mask_);
							 | 
						||
| 
								 | 
							
											ar & BOOST_SERIALIZATION_NVP(H_);
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}; // \class PartialPriorFactor
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} /// namespace gtsam
							 |