| 
									
										
										
										
											2012-04-16 06:35:28 +08:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * schedulingExample.cpp | 
					
						
							|  |  |  |  * @brief hard scheduling example | 
					
						
							|  |  |  |  * @date March 25, 2011 | 
					
						
							|  |  |  |  * @author Frank Dellaert | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define ENABLE_TIMING
 | 
					
						
							|  |  |  | #define ADD_NO_CACHING
 | 
					
						
							|  |  |  | #define ADD_NO_PRUNING
 | 
					
						
							| 
									
										
										
										
											2012-06-06 12:29:14 +08:00
										 |  |  | #define ENABLE_OLD_TIMING
 | 
					
						
							| 
									
										
										
										
											2012-05-15 08:47:19 +08:00
										 |  |  | #include <gtsam_unstable/discrete/Scheduler.h>
 | 
					
						
							| 
									
										
										
										
											2012-04-16 06:35:28 +08:00
										 |  |  | #include <gtsam/base/debug.h>
 | 
					
						
							|  |  |  | #include <gtsam/base/timing.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <boost/assign/std/vector.hpp>
 | 
					
						
							|  |  |  | #include <boost/assign/std/map.hpp>
 | 
					
						
							|  |  |  | #include <boost/optional.hpp>
 | 
					
						
							|  |  |  | #include <boost/foreach.hpp>
 | 
					
						
							|  |  |  | #include <boost/format.hpp>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <algorithm>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace boost::assign; | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | size_t NRSTUDENTS = 9; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | bool NonZero(size_t i) { | 
					
						
							|  |  |  | 	return i > 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void addStudent(Scheduler& s, size_t i) { | 
					
						
							|  |  |  | 	switch (i) { | 
					
						
							|  |  |  | 	case 0: | 
					
						
							|  |  |  | 		s.addStudent("Pan, Yunpeng", "Controls", "Perception", "Mechanics", "Eric Johnson"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 1: | 
					
						
							|  |  |  | 		s.addStudent("Sawhney, Rahul", "Controls", "AI", "Perception", "Henrik Christensen"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 2: | 
					
						
							|  |  |  | 		s.addStudent("Akgun, Baris", "Controls", "AI", "HRI", "Andrea Thomaz"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 3: | 
					
						
							|  |  |  | 		s.addStudent("Jiang, Shu", "Controls", "AI", "Perception", "Ron Arkin"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 4: | 
					
						
							|  |  |  | 		s.addStudent("Grice, Phillip", "Controls", "Perception", "HRI", "Charlie Kemp"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 5: | 
					
						
							|  |  |  | 		s.addStudent("Huaman, Ana", "Controls", "AI", "Perception", "Mike Stilman"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 6: | 
					
						
							|  |  |  | 		s.addStudent("Levihn, Martin", "AI", "Autonomy", "Perception", "Mike Stilman"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 7: | 
					
						
							|  |  |  | 		s.addStudent("Nieto, Carlos", "AI", "Autonomy", "Perception", "Henrik Christensen"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	case 8: | 
					
						
							|  |  |  | 		s.addStudent("Robinette, Paul", "Controls", "AI", "HRI", "Ayanna Howard"); | 
					
						
							|  |  |  | 		break; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Scheduler largeExample(size_t nrStudents = NRSTUDENTS) { | 
					
						
							| 
									
										
										
										
											2012-05-15 09:01:31 +08:00
										 |  |  | 	string path("../../../gtsam_unstable/discrete/examples/"); | 
					
						
							| 
									
										
										
										
											2012-04-16 06:35:28 +08:00
										 |  |  | 	Scheduler s(nrStudents, path + "Doodle2012.csv"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Harvey Lipkin", "Mechanics"); | 
					
						
							|  |  |  | 	s.addArea("Jun Ueda", "Mechanics"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Patricio Vela", "Controls"); | 
					
						
							|  |  |  | 	s.addArea("Magnus Egerstedt", "Controls"); | 
					
						
							|  |  |  | 	s.addArea("Jun Ueda", "Controls"); | 
					
						
							|  |  |  | 	s.addArea("Panos Tsiotras", "Controls"); | 
					
						
							|  |  |  | 	s.addArea("Fumin Zhang", "Controls"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Henrik Christensen", "Perception"); | 
					
						
							|  |  |  | 	s.addArea("Aaron Bobick", "Perception"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Mike Stilman", "AI"); | 
					
						
							|  |  |  | //	s.addArea("Henrik Christensen", "AI");
 | 
					
						
							|  |  |  | 	s.addArea("Ayanna Howard", "AI"); | 
					
						
							|  |  |  | 	s.addArea("Charles Isbell", "AI"); | 
					
						
							|  |  |  | 	s.addArea("Tucker Balch", "AI"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Ayanna Howard", "Autonomy"); | 
					
						
							|  |  |  | 	s.addArea("Charlie Kemp", "Autonomy"); | 
					
						
							|  |  |  | 	s.addArea("Tucker Balch", "Autonomy"); | 
					
						
							|  |  |  | 	s.addArea("Ron Arkin", "Autonomy"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	s.addArea("Andrea Thomaz", "HRI"); | 
					
						
							|  |  |  | 	s.addArea("Karen Feigh", "HRI"); | 
					
						
							|  |  |  | 	s.addArea("Charlie Kemp", "HRI"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// add students
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < nrStudents; i++) | 
					
						
							|  |  |  | 		addStudent(s, i); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return s; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void runLargeExample() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Scheduler scheduler = largeExample(); | 
					
						
							|  |  |  | 	scheduler.print(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// BUILD THE GRAPH !
 | 
					
						
							|  |  |  | 	size_t addMutex = 3; | 
					
						
							|  |  |  | 	// SETDEBUG("Scheduler::buildGraph", true);
 | 
					
						
							|  |  |  | 	scheduler.buildGraph(addMutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Do brute force product and output that to file
 | 
					
						
							|  |  |  | 	if (scheduler.nrStudents() == 1) { // otherwise too slow
 | 
					
						
							|  |  |  | 		DecisionTreeFactor product = scheduler.product(); | 
					
						
							|  |  |  | 		product.dot("scheduling-large", false); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Do exact inference
 | 
					
						
							|  |  |  | 	//	SETDEBUG("timing-verbose", true);
 | 
					
						
							|  |  |  | 	SETDEBUG("DiscreteConditional::DiscreteConditional", true); | 
					
						
							|  |  |  | #define SAMPLE
 | 
					
						
							|  |  |  | #ifdef SAMPLE
 | 
					
						
							|  |  |  | 	tic(2, "large"); | 
					
						
							|  |  |  | 	DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | 
					
						
							|  |  |  | 	toc(2, "large"); | 
					
						
							|  |  |  | 	tictoc_finishedIteration(); | 
					
						
							|  |  |  | 	tictoc_print(); | 
					
						
							|  |  |  | 	for (size_t i=0;i<100;i++) { | 
					
						
							|  |  |  | 		DiscreteFactor::sharedValues assignment = sample(*chordal); | 
					
						
							|  |  |  | 		vector<size_t> stats(scheduler.nrFaculty()); | 
					
						
							|  |  |  | 		scheduler.accumulateStats(assignment, stats); | 
					
						
							|  |  |  | 		size_t max = *max_element(stats.begin(), stats.end()); | 
					
						
							|  |  |  | 		size_t min = *min_element(stats.begin(), stats.end()); | 
					
						
							|  |  |  | 		size_t nz = count_if(stats.begin(), stats.end(), NonZero); | 
					
						
							|  |  |  | //		cout << min << ", " << max << ", "  << nz << endl;
 | 
					
						
							|  |  |  | 		if (nz >= 13 && min >=1 && max <= 4) { | 
					
						
							|  |  |  | 			cout << "======================================================\n"; | 
					
						
							|  |  |  | 			scheduler.printAssignment(assignment); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 	tic(2, "large"); | 
					
						
							|  |  |  | 	DiscreteFactor::sharedValues MPE = scheduler.optimalAssignment(); | 
					
						
							|  |  |  | 	toc(2, "large"); | 
					
						
							|  |  |  | 	tictoc_finishedIteration(); | 
					
						
							|  |  |  | 	tictoc_print(); | 
					
						
							|  |  |  | 	scheduler.printAssignment(MPE); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // Solve a series of relaxed problems for maximum flexibility solution
 | 
					
						
							|  |  |  | void solveStaged(size_t addMutex = 2) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// super-hack! just count...
 | 
					
						
							|  |  |  | 	bool debug = false; | 
					
						
							|  |  |  | 	SETDEBUG("DiscreteConditional::COUNT", true); | 
					
						
							|  |  |  | 	SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// make a vector with slot availability, initially all 1
 | 
					
						
							|  |  |  | 	// Reads file to get count :-)
 | 
					
						
							|  |  |  | 	vector<double> slotsAvailable(largeExample(0).nrTimeSlots(), 1.0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// now, find optimal value for each student, using relaxed mutex constraints
 | 
					
						
							|  |  |  | 	for (size_t s = 0; s < NRSTUDENTS; s++) { | 
					
						
							|  |  |  | 		// add all students first time, then drop last one second time, etc...
 | 
					
						
							|  |  |  | 		Scheduler scheduler = largeExample(NRSTUDENTS - s); | 
					
						
							|  |  |  | 		//scheduler.print(str(boost::format("Scheduler %d") % (NRSTUDENTS-s)));
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// only allow slots not yet taken
 | 
					
						
							|  |  |  | 		scheduler.setSlotsAvailable(slotsAvailable); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// BUILD THE GRAPH !
 | 
					
						
							|  |  |  | 		scheduler.buildGraph(addMutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// Do EXACT INFERENCE
 | 
					
						
							|  |  |  | 		tic_("eliminate"); | 
					
						
							|  |  |  | 		DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | 
					
						
							|  |  |  | 		toc_("eliminate"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// find root node
 | 
					
						
							|  |  |  | 		DiscreteConditional::shared_ptr root = *(chordal->rbegin()); | 
					
						
							|  |  |  | 		if (debug) | 
					
						
							|  |  |  | 			root->print(""/*scheduler.studentName(s)*/); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// solve root node only
 | 
					
						
							|  |  |  | 		Scheduler::Values values; | 
					
						
							|  |  |  | 		size_t bestSlot = root->solve(values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// get corresponding count
 | 
					
						
							|  |  |  | 		DiscreteKey dkey = scheduler.studentKey(NRSTUDENTS - 1 - s); | 
					
						
							|  |  |  | 		values[dkey.first] = bestSlot; | 
					
						
							|  |  |  | 		size_t count = (*root)(values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// remove this slot from consideration
 | 
					
						
							|  |  |  | 		slotsAvailable[bestSlot] = 0.0; | 
					
						
							|  |  |  | 		cout << boost::format("%s = %d (%d), count = %d") % scheduler.studentName(NRSTUDENTS-1-s) | 
					
						
							|  |  |  | 				% scheduler.slotName(bestSlot) % bestSlot % count << endl; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	tictoc_print_(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | // Sample from solution found above and evaluate cost function
 | 
					
						
							|  |  |  | DiscreteBayesNet::shared_ptr createSampler(size_t i, | 
					
						
							|  |  |  | 		size_t slot, vector<Scheduler>& schedulers) { | 
					
						
							|  |  |  | 	Scheduler scheduler = largeExample(0); // todo: wrong nr students
 | 
					
						
							|  |  |  | 	addStudent(scheduler, i); | 
					
						
							|  |  |  | 	SETDEBUG("Scheduler::buildGraph", false); | 
					
						
							|  |  |  | 	scheduler.addStudentSpecificConstraints(0, slot); | 
					
						
							|  |  |  | 	DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | 
					
						
							|  |  |  | 	// chordal->print(scheduler[i].studentKey(0).name()); // large !
 | 
					
						
							|  |  |  | 	schedulers.push_back(scheduler); | 
					
						
							|  |  |  | 	return chordal; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void sampleSolutions() { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	vector<Scheduler> schedulers; | 
					
						
							|  |  |  | 	vector<DiscreteBayesNet::shared_ptr> samplers(NRSTUDENTS); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// Given the time-slots, we can create NRSTUDENTS independent samplers
 | 
					
						
							|  |  |  | 	vector<size_t> slots; | 
					
						
							|  |  |  | 	slots += 3, 20, 2, 6, 5, 11, 1, 4; // given slots
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < NRSTUDENTS; i++) | 
					
						
							|  |  |  | 		samplers[i] = createSampler(i, slots[i], schedulers); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// now, sample schedules
 | 
					
						
							|  |  |  | 	for (size_t n = 0; n < 500; n++) { | 
					
						
							|  |  |  | 		vector<size_t> stats(19, 0); | 
					
						
							|  |  |  | 		vector<Scheduler::sharedValues> samples; | 
					
						
							|  |  |  | 		for (size_t i = 0; i < NRSTUDENTS; i++) { | 
					
						
							|  |  |  | 			samples.push_back(sample(*samplers[i])); | 
					
						
							|  |  |  | 			schedulers[i].accumulateStats(samples[i], stats); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		size_t max = *max_element(stats.begin(), stats.end()); | 
					
						
							|  |  |  | 		size_t min = *min_element(stats.begin(), stats.end()); | 
					
						
							|  |  |  | 		size_t nz = count_if(stats.begin(), stats.end(), NonZero); | 
					
						
							|  |  |  | 		if (nz >= 15 && max <= 2) { | 
					
						
							|  |  |  | 			cout << boost::format( | 
					
						
							|  |  |  | 					"Sampled schedule %d, min = %d, nz = %d, max = %d\n") % (n + 1) % min | 
					
						
							|  |  |  | 					% nz % max; | 
					
						
							|  |  |  | 			for (size_t i = 0; i < NRSTUDENTS; i++) { | 
					
						
							|  |  |  | 				cout << schedulers[i].studentName(0) << " : " << schedulers[i].slotName( | 
					
						
							|  |  |  | 						slots[i]) << endl; | 
					
						
							|  |  |  | 				schedulers[i].printSpecial(samples[i]); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | int main() { | 
					
						
							|  |  |  | 	runLargeExample(); | 
					
						
							|  |  |  | //	solveStaged(3);
 | 
					
						
							|  |  |  | //	sampleSolutions();
 | 
					
						
							|  |  |  | 	return 0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | 
 |