305 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			305 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
|  | /**
 | ||
|  |  * @file    testGaussianISAM.cpp | ||
|  |  * @brief   Unit tests for GaussianISAM | ||
|  |  * @author  Michael Kaess | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <boost/foreach.hpp>
 | ||
|  | #include <boost/assign/std/list.hpp> // for operator +=
 | ||
|  | using namespace boost::assign; | ||
|  | 
 | ||
|  | #include <CppUnitLite/TestHarness.h>
 | ||
|  | 
 | ||
|  | #include "Ordering.h"
 | ||
|  | #include "GaussianBayesNet.h"
 | ||
|  | #include "ISAM-inl.h"
 | ||
|  | #include "GaussianISAM.h"
 | ||
|  | #include "smallExample.h"
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | // Some numbers that should be consistent among all smoother tests
 | ||
|  | 
 | ||
|  | double sigmax1 = 0.786153, sigmax2 = 0.687131, sigmax3 = 0.671512, sigmax4 = | ||
|  | 		0.669534, sigmax5 = sigmax3, sigmax6 = sigmax2, sigmax7 = sigmax1; | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( ISAM, iSAM_smoother ) | ||
|  | { | ||
|  | 	// Create smoother with 7 nodes
 | ||
|  | 	GaussianFactorGraph smoother = createSmoother(7); | ||
|  | 
 | ||
|  | 	// run iSAM for every factor
 | ||
|  | 	GaussianISAM actual; | ||
|  | 	BOOST_FOREACH(boost::shared_ptr<GaussianFactor> factor, smoother) { | ||
|  | 		GaussianFactorGraph factorGraph; | ||
|  | 		factorGraph.push_back(factor); | ||
|  | 		actual.update(factorGraph); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Create expected Bayes Tree by solving smoother with "natural" ordering
 | ||
|  | 	Ordering ordering; | ||
|  | 	for (int t = 1; t <= 7; t++) ordering += symbol('x', t); | ||
|  | 	GaussianISAM expected(smoother.eliminate(ordering)); | ||
|  | 
 | ||
|  | 	// Check whether BayesTree is correct
 | ||
|  | 	CHECK(assert_equal(expected, actual)); | ||
|  | 
 | ||
|  | 	// obtain solution
 | ||
|  | 	VectorConfig e; // expected solution
 | ||
|  | 	Vector v = Vector_(2, 0., 0.); | ||
|  | 	for (int i=1; i<=7; i++) | ||
|  | 		e.insert(symbol('x', i), v); | ||
|  | 	VectorConfig optimized = optimize(actual); // actual solution
 | ||
|  | 	CHECK(assert_equal(e, optimized)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( ISAM, iSAM_smoother2 ) | ||
|  | { | ||
|  | 	// Create smoother with 7 nodes
 | ||
|  | 	GaussianFactorGraph smoother = createSmoother(7); | ||
|  | 
 | ||
|  | 	// Create initial tree from first 4 timestamps in reverse order !
 | ||
|  | 	Ordering ord; ord += "x4","x3","x2","x1"; | ||
|  | 	GaussianFactorGraph factors1; | ||
|  | 	for (int i=0;i<7;i++) factors1.push_back(smoother[i]); | ||
|  | 	GaussianISAM actual(factors1.eliminate(ord)); | ||
|  | 
 | ||
|  | 	// run iSAM with remaining factors
 | ||
|  | 	GaussianFactorGraph factors2; | ||
|  | 	for (int i=7;i<13;i++) factors2.push_back(smoother[i]); | ||
|  | 	actual.update(factors2); | ||
|  | 
 | ||
|  | 	// Create expected Bayes Tree by solving smoother with "natural" ordering
 | ||
|  | 	Ordering ordering; | ||
|  | 	for (int t = 1; t <= 7; t++) ordering += symbol('x', t); | ||
|  | 	GaussianISAM expected(smoother.eliminate(ordering)); | ||
|  | 
 | ||
|  | 	CHECK(assert_equal(expected, actual)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* *
 | ||
|  |  Bayes tree for smoother with "natural" ordering: | ||
|  | C1 x6 x7 | ||
|  | C2   x5 : x6 | ||
|  | C3     x4 : x5 | ||
|  | C4       x3 : x4 | ||
|  | C5         x2 : x3 | ||
|  | C6           x1 : x2 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( BayesTree, linear_smoother_shortcuts ) | ||
|  | { | ||
|  | 	// Create smoother with 7 nodes
 | ||
|  | 	GaussianFactorGraph smoother = createSmoother(7); | ||
|  | 	Ordering ordering; | ||
|  | 	for (int t = 1; t <= 7; t++) | ||
|  | 		ordering.push_back(symbol('x', t)); | ||
|  | 
 | ||
|  | 	// eliminate using the "natural" ordering
 | ||
|  | 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); | ||
|  | 
 | ||
|  | 	// Create the Bayes tree
 | ||
|  | 	GaussianISAM bayesTree(chordalBayesNet); | ||
|  | 	LONGS_EQUAL(6,bayesTree.size()); | ||
|  | 
 | ||
|  | 	// Check the conditional P(Root|Root)
 | ||
|  | 	GaussianBayesNet empty; | ||
|  | 	GaussianISAM::sharedClique R = bayesTree.root(); | ||
|  | 	GaussianBayesNet actual1 = R->shortcut<GaussianFactor>(R); | ||
|  | 	CHECK(assert_equal(empty,actual1,1e-4)); | ||
|  | 
 | ||
|  | 	// Check the conditional P(C2|Root)
 | ||
|  | 	GaussianISAM::sharedClique C2 = bayesTree["x5"]; | ||
|  | 	GaussianBayesNet actual2 = C2->shortcut<GaussianFactor>(R); | ||
|  | 	CHECK(assert_equal(empty,actual2,1e-4)); | ||
|  | 
 | ||
|  | 	// Check the conditional P(C3|Root)
 | ||
|  |   Vector sigma3 = repeat(2, 0.61808); | ||
|  |   Matrix A56 = Matrix_(2,2,-0.382022,0.,0.,-0.382022); | ||
|  | 	GaussianBayesNet expected3; | ||
|  | 	push_front(expected3,"x5", zero(2), eye(2), "x6", A56, sigma3); | ||
|  | 	GaussianISAM::sharedClique C3 = bayesTree["x4"]; | ||
|  | 	GaussianBayesNet actual3 = C3->shortcut<GaussianFactor>(R); | ||
|  | 	CHECK(assert_equal(expected3,actual3,1e-4)); | ||
|  | 
 | ||
|  | 	// Check the conditional P(C4|Root)
 | ||
|  |   Vector sigma4 = repeat(2, 0.661968); | ||
|  |   Matrix A46 = Matrix_(2,2,-0.146067,0.,0.,-0.146067); | ||
|  |   GaussianBayesNet expected4; | ||
|  |   push_front(expected4,"x4", zero(2), eye(2), "x6", A46, sigma4); | ||
|  | 	GaussianISAM::sharedClique C4 = bayesTree["x3"]; | ||
|  | 	GaussianBayesNet actual4 = C4->shortcut<GaussianFactor>(R); | ||
|  | 	CHECK(assert_equal(expected4,actual4,1e-4)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* *
 | ||
|  |  Bayes tree for smoother with "nested dissection" ordering: | ||
|  | 
 | ||
|  | 	 Node[x1] P(x1 | x2) | ||
|  | 	 Node[x3] P(x3 | x2 x4) | ||
|  | 	 Node[x5] P(x5 | x4 x6) | ||
|  | 	 Node[x7] P(x7 | x6) | ||
|  | 	 Node[x2] P(x2 | x4) | ||
|  | 	 Node[x6] P(x6 | x4) | ||
|  | 	 Node[x4] P(x4) | ||
|  | 
 | ||
|  |  becomes | ||
|  | 
 | ||
|  | 	 C1		 x5 x6 x4 | ||
|  | 	 C2		  x3 x2 : x4 | ||
|  | 	 C3		    x1 : x2 | ||
|  | 	 C4		  x7 : x6 | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( BayesTree, balanced_smoother_marginals ) | ||
|  | { | ||
|  | 	// Create smoother with 7 nodes
 | ||
|  | 	GaussianFactorGraph smoother = createSmoother(7); | ||
|  | 	Ordering ordering; | ||
|  | 	ordering += "x1","x3","x5","x7","x2","x6","x4"; | ||
|  | 
 | ||
|  | 	// eliminate using a "nested dissection" ordering
 | ||
|  | 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); | ||
|  | 
 | ||
|  |   VectorConfig expectedSolution; | ||
|  |   BOOST_FOREACH(string key, ordering) | ||
|  | 		expectedSolution.insert(key,zero(2)); | ||
|  |   VectorConfig actualSolution = optimize(chordalBayesNet); | ||
|  | 	CHECK(assert_equal(expectedSolution,actualSolution,1e-4)); | ||
|  | 
 | ||
|  | 	// Create the Bayes tree
 | ||
|  | 	GaussianISAM bayesTree(chordalBayesNet); | ||
|  | 	LONGS_EQUAL(4,bayesTree.size()); | ||
|  | 
 | ||
|  | 	// Check marginal on x1
 | ||
|  | 	GaussianBayesNet expected1 = simpleGaussian("x1", zero(2), sigmax1); | ||
|  | 	GaussianBayesNet actual1 = bayesTree.marginalBayesNet<GaussianFactor>("x1"); | ||
|  | 	CHECK(assert_equal(expected1,actual1,1e-4)); | ||
|  | 
 | ||
|  | 	// Check marginal on x2
 | ||
|  |   GaussianBayesNet expected2 = simpleGaussian("x2", zero(2), sigmax2); | ||
|  | 	GaussianBayesNet actual2 = bayesTree.marginalBayesNet<GaussianFactor>("x2"); | ||
|  | 	CHECK(assert_equal(expected2,actual2,1e-4)); | ||
|  | 
 | ||
|  | 	// Check marginal on x3
 | ||
|  |   GaussianBayesNet expected3 = simpleGaussian("x3", zero(2), sigmax3); | ||
|  | 	GaussianBayesNet actual3 = bayesTree.marginalBayesNet<GaussianFactor>("x3"); | ||
|  | 	CHECK(assert_equal(expected3,actual3,1e-4)); | ||
|  | 
 | ||
|  | 	// Check marginal on x4
 | ||
|  |   GaussianBayesNet expected4 = simpleGaussian("x4", zero(2), sigmax4); | ||
|  | 	GaussianBayesNet actual4 = bayesTree.marginalBayesNet<GaussianFactor>("x4"); | ||
|  | 	CHECK(assert_equal(expected4,actual4,1e-4)); | ||
|  | 
 | ||
|  | 	// Check marginal on x7 (should be equal to x1)
 | ||
|  |   GaussianBayesNet expected7 = simpleGaussian("x7", zero(2), sigmax7); | ||
|  | 	GaussianBayesNet actual7 = bayesTree.marginalBayesNet<GaussianFactor>("x7"); | ||
|  | 	CHECK(assert_equal(expected7,actual7,1e-4)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( BayesTree, balanced_smoother_shortcuts ) | ||
|  | { | ||
|  | 	// Create smoother with 7 nodes
 | ||
|  | 	GaussianFactorGraph smoother = createSmoother(7); | ||
|  | 	Ordering ordering; | ||
|  | 	ordering += "x1","x3","x5","x7","x2","x6","x4"; | ||
|  | 
 | ||
|  | 	// Create the Bayes tree
 | ||
|  | 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); | ||
|  | 	GaussianISAM bayesTree(chordalBayesNet); | ||
|  | 
 | ||
|  | 	// Check the conditional P(Root|Root)
 | ||
|  | 	GaussianBayesNet empty; | ||
|  | 	GaussianISAM::sharedClique R = bayesTree.root(); | ||
|  | 	GaussianBayesNet actual1 = R->shortcut<GaussianFactor>(R); | ||
|  | 	CHECK(assert_equal(empty,actual1,1e-4)); | ||
|  | 
 | ||
|  | 	// Check the conditional P(C2|Root)
 | ||
|  | 	GaussianISAM::sharedClique C2 = bayesTree["x3"]; | ||
|  | 	GaussianBayesNet actual2 = C2->shortcut<GaussianFactor>(R); | ||
|  | 	CHECK(assert_equal(empty,actual2,1e-4)); | ||
|  | 
 | ||
|  | 	// Check the conditional P(C3|Root), which should be equal to P(x2|x4)
 | ||
|  | 	GaussianConditional::shared_ptr p_x2_x4 = chordalBayesNet["x2"]; | ||
|  | 	GaussianBayesNet expected3; expected3.push_back(p_x2_x4); | ||
|  | 	GaussianISAM::sharedClique C3 = bayesTree["x1"]; | ||
|  | 	GaussianBayesNet actual3 = C3->shortcut<GaussianFactor>(R); | ||
|  | 	CHECK(assert_equal(expected3,actual3,1e-4)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( BayesTree, balanced_smoother_clique_marginals ) | ||
|  | { | ||
|  | 	// Create smoother with 7 nodes
 | ||
|  | 	GaussianFactorGraph smoother = createSmoother(7); | ||
|  | 	Ordering ordering; | ||
|  | 	ordering += "x1","x3","x5","x7","x2","x6","x4"; | ||
|  | 
 | ||
|  | 	// Create the Bayes tree
 | ||
|  | 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); | ||
|  | 	GaussianISAM bayesTree(chordalBayesNet); | ||
|  | 
 | ||
|  | 	// Check the clique marginal P(C3)
 | ||
|  | 	GaussianBayesNet expected = simpleGaussian("x2",zero(2),sigmax2); | ||
|  |   Vector sigma = repeat(2, 0.707107); | ||
|  |   Matrix A12 = (-0.5)*eye(2); | ||
|  |   push_front(expected,"x1", zero(2), eye(2), "x2", A12, sigma); | ||
|  | 	GaussianISAM::sharedClique R = bayesTree.root(), C3 = bayesTree["x1"]; | ||
|  | 	FactorGraph<GaussianFactor> marginal = C3->marginal<GaussianFactor>(R); | ||
|  | 	GaussianBayesNet actual = eliminate<GaussianFactor,GaussianConditional>(marginal,C3->keys()); | ||
|  | 	CHECK(assert_equal(expected,actual,1e-4)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( BayesTree, balanced_smoother_joint ) | ||
|  | { | ||
|  | 	// Create smoother with 7 nodes
 | ||
|  | 	GaussianFactorGraph smoother = createSmoother(7); | ||
|  | 	Ordering ordering; | ||
|  | 	ordering += "x1","x3","x5","x7","x2","x6","x4"; | ||
|  | 
 | ||
|  | 	// Create the Bayes tree
 | ||
|  | 	GaussianBayesNet chordalBayesNet = smoother.eliminate(ordering); | ||
|  | 	GaussianISAM bayesTree(chordalBayesNet); | ||
|  | 
 | ||
|  |   // Conditional density elements reused by both tests
 | ||
|  | 	Vector sigma = repeat(2, 0.786146); | ||
|  |   Matrix I = eye(2), A = -0.00429185*I; | ||
|  | 
 | ||
|  |   // Check the joint density P(x1,x7) factored as P(x1|x7)P(x7)
 | ||
|  |   GaussianBayesNet expected1 = simpleGaussian("x7", zero(2), sigmax7); | ||
|  |   push_front(expected1,"x1", zero(2), I, "x7", A, sigma); | ||
|  | 	GaussianBayesNet actual1 = bayesTree.jointBayesNet<GaussianFactor>("x1","x7"); | ||
|  | 	CHECK(assert_equal(expected1,actual1,1e-4)); | ||
|  | 
 | ||
|  | 	// Check the joint density P(x7,x1) factored as P(x7|x1)P(x1)
 | ||
|  |   GaussianBayesNet expected2 = simpleGaussian("x1", zero(2), sigmax1); | ||
|  |   push_front(expected2,"x7", zero(2), I, "x1", A, sigma); | ||
|  | 	GaussianBayesNet actual2 = bayesTree.jointBayesNet<GaussianFactor>("x7","x1"); | ||
|  | 	CHECK(assert_equal(expected2,actual2,1e-4)); | ||
|  | 
 | ||
|  | 	// Check the joint density P(x1,x4), i.e. with a root variable
 | ||
|  |   GaussianBayesNet expected3 = simpleGaussian("x4", zero(2), sigmax4); | ||
|  | 	Vector sigma14 = repeat(2, 0.784465); | ||
|  |   Matrix A14 = -0.0769231*I; | ||
|  |   push_front(expected3,"x1", zero(2), I, "x4", A14, sigma14); | ||
|  | 	GaussianBayesNet actual3 = bayesTree.jointBayesNet<GaussianFactor>("x1","x4"); | ||
|  | 	CHECK(assert_equal(expected3,actual3,1e-4)); | ||
|  | 
 | ||
|  | 	// Check the joint density P(x4,x1), i.e. with a root variable, factored the other way
 | ||
|  |   GaussianBayesNet expected4 = simpleGaussian("x1", zero(2), sigmax1); | ||
|  | 	Vector sigma41 = repeat(2, 0.668096); | ||
|  |   Matrix A41 = -0.055794*I; | ||
|  |   push_front(expected4,"x4", zero(2), I, "x1", A41, sigma41); | ||
|  | 	GaussianBayesNet actual4 = bayesTree.jointBayesNet<GaussianFactor>("x4","x1"); | ||
|  | 	CHECK(assert_equal(expected4,actual4,1e-4)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main() { TestResult tr; return TestRegistry::runAllTests(tr);} | ||
|  | /* ************************************************************************* */ |