| 
									
										
										
										
											2009-10-24 22:09:30 +08:00
										 |  |  | % Set up a small SLAM example in MATLAB to test the execution time | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | clear; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %Parameters | 
					
						
							|  |  |  | noRuns=100; | 
					
						
							|  |  |  | steps=1; | 
					
						
							|  |  |  | m = 5; | 
					
						
							|  |  |  | velocity=1; | 
					
						
							|  |  |  | time_qr=[]; | 
					
						
							|  |  |  | time_gtsam=[]; | 
					
						
							|  |  |  | for steps=1:noRuns | 
					
						
							|  |  |  |   | 
					
						
							|  |  |  |     %figure(1);clf; | 
					
						
							|  |  |  |     % robot moves in the world | 
					
						
							|  |  |  |     trajectory = walk([0.1,0.1],velocity,m); | 
					
						
							|  |  |  |     mappingArea=max(trajectory,[],2); | 
					
						
							|  |  |  |     %plot(trajectory(1,:),trajectory(2,:),'b+'); hold on; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     visibilityTh=sqrt(mappingArea(1)^2+mappingArea(2)^2)/m; %distance between poses | 
					
						
							|  |  |  |     % Set up the map | 
					
						
							|  |  |  |     map = create_landmarks(visibilityTh, mappingArea,steps); | 
					
						
							|  |  |  |     %plot(map(1,:), map(2,:),'g.'); | 
					
						
							|  |  |  |     %axis([0 mappingArea(1) 0 mappingArea(2)]); axis square; | 
					
						
							|  |  |  |     n=size(map,1)*size(map,2); | 
					
						
							|  |  |  |     % Check visibility and plot this on the problem figure | 
					
						
							|  |  |  |     visibilityTh=visibilityTh+steps; | 
					
						
							|  |  |  |     visibility = create_visibility(map, trajectory,visibilityTh); | 
					
						
							|  |  |  |     %gplot(visibility,[map trajectory]'); | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     % simulate the measurements | 
					
						
							|  |  |  |     measurement_sigma = 1; | 
					
						
							|  |  |  |     odo_sigma = 0.1; | 
					
						
							|  |  |  |     [measurements, odometry] = simulate_measurements(map, trajectory, visibility, measurement_sigma, odo_sigma); | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  | %     % create a configuration of all zeroes | 
					
						
							|  |  |  |      config = create_config(n,m); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     % create the factor graph | 
					
						
							|  |  |  |     linearFactorGraph = create_linear_factor_graph(config, measurements, odometry, measurement_sigma, odo_sigma, n); | 
					
						
							|  |  |  |     %  | 
					
						
							|  |  |  |     % create an ordering | 
					
						
							|  |  |  |     ord = create_ordering(n,m); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     % show the matrix | 
					
						
							|  |  |  |    % figure(3); clf; | 
					
						
							|  |  |  |     [A_dense,b] = linearFactorGraph.matrix(ord); | 
					
						
							|  |  |  |     A=sparse(A_dense); | 
					
						
							|  |  |  |     size(A) | 
					
						
							|  |  |  |     %spy(A); | 
					
						
							|  |  |  |     %time qr | 
					
						
							|  |  |  |     ck=cputime; | 
					
						
							|  |  |  |     R_qr = qr(A); | 
					
						
							|  |  |  |     time_qr=[time_qr,(cputime-ck)]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     %figure(2) | 
					
						
							|  |  |  |     %clf | 
					
						
							|  |  |  |     %spy(R_qr); | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     % eliminate with that ordering | 
					
						
							|  |  |  |     %time gt_sam | 
					
						
							|  |  |  |     ck=cputime; | 
					
						
							| 
									
										
										
										
											2009-11-11 15:14:13 +08:00
										 |  |  |     BayesNet = linearFactorGraph.eliminate_(ord); | 
					
						
							| 
									
										
										
										
											2009-10-24 22:09:30 +08:00
										 |  |  |     time_gtsam=[time_gtsam,(cputime-ck)]; | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     clear trajectory visibility linearFactorGraph measurements odometry; | 
					
						
							|  |  |  |     m = m+5; | 
					
						
							|  |  |  |     velocity=velocity+1; | 
					
						
							|  |  |  |     steps=steps+1; | 
					
						
							|  |  |  | end | 
					
						
							|  |  |  | plot(time_qr,'r');hold on; | 
					
						
							|  |  |  | plot(time_gtsam,'b'); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
					
						
							|  |  |  | % % show the eliminated matrix | 
					
						
							|  |  |  | % figure(4); clf; | 
					
						
							|  |  |  | % [R,d] = BayesNet.matrix(); | 
					
						
							|  |  |  | % spy(R); | 
					
						
							|  |  |  | %  | 
					
						
							|  |  |  | % % optimize in the BayesNet | 
					
						
							|  |  |  | % optimal = BayesNet.optimize; | 
					
						
							|  |  |  | %  | 
					
						
							|  |  |  | % % plot the solution | 
					
						
							|  |  |  | % figure(5);clf;  | 
					
						
							|  |  |  | % plot_config(optimal,n,m);hold on | 
					
						
							|  |  |  | % plot(trajectory(1,:),trajectory(2,:),'b+'); | 
					
						
							|  |  |  | % plot(map(1,:), map(2,:),'g.'); | 
					
						
							|  |  |  | % axis([0 10 0 10]);axis square; |