69 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			69 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Matlab
		
	
	
| 
								 | 
							
								%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
							 | 
						||
| 
								 | 
							
								% GTSAM Copyright 2010, Georgia Tech Research Corporation, 
							 | 
						||
| 
								 | 
							
								% Atlanta, Georgia 30332-0415
							 | 
						||
| 
								 | 
							
								% All Rights Reserved
							 | 
						||
| 
								 | 
							
								% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
							 | 
						||
| 
								 | 
							
								% 
							 | 
						||
| 
								 | 
							
								% See LICENSE for the license information
							 | 
						||
| 
								 | 
							
								%
							 | 
						||
| 
								 | 
							
								% @brief Example of a simple 2D localization example
							 | 
						||
| 
								 | 
							
								% @author Frank Dellaert
							 | 
						||
| 
								 | 
							
								%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Copied Original file. Modified by David Jensen to use Pose3 instead of
							 | 
						||
| 
								 | 
							
								% Pose2. Everything else is the same.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import gtsam.*
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Assumptions
							 | 
						||
| 
								 | 
							
								%  - Robot poses are facing along the X axis (horizontal, to the right in 2D)
							 | 
						||
| 
								 | 
							
								%  - The robot moves 2 meters each step
							 | 
						||
| 
								 | 
							
								%  - The robot is on a grid, moving 2 meters each step
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
							 | 
						||
| 
								 | 
							
								graph = NonlinearFactorGraph;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Add a Gaussian prior on pose x_1
							 | 
						||
| 
								 | 
							
								priorMean = Pose3();%Pose3.Expmap([0.0; 0.0; 0.0; 0.0; 0.0; 0.0]); % prior mean is at origin
							 | 
						||
| 
								 | 
							
								priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.3; 0.1; 0.1; 0.1]); % 30cm std on x,y, 0.1 rad on theta
							 | 
						||
| 
								 | 
							
								graph.add(PriorFactorPose3(1, priorMean, priorNoise)); % add directly to graph
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Add two odometry factors
							 | 
						||
| 
								 | 
							
								odometry = Pose3.Expmap([0.0; 0.0; 0.0; 2.0; 0.0; 0.0]); % create a measurement for both factors (the same in this case)
							 | 
						||
| 
								 | 
							
								odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.2; 0.1; 0.1; 0.1]); % 20cm std on x,y, 0.1 rad on theta
							 | 
						||
| 
								 | 
							
								graph.add(BetweenFactorPose3(1, 2, odometry, odometryNoise));
							 | 
						||
| 
								 | 
							
								graph.add(BetweenFactorPose3(2, 3, odometry, odometryNoise));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% print
							 | 
						||
| 
								 | 
							
								graph.print(sprintf('\nFactor graph:\n'));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Initialize to noisy points
							 | 
						||
| 
								 | 
							
								initialEstimate = Values;
							 | 
						||
| 
								 | 
							
								%initialEstimate.insert(1, Pose3.Expmap([0.2; 0.1; 0.1; 0.5; 0.0; 0.0]));
							 | 
						||
| 
								 | 
							
								%initialEstimate.insert(2, Pose3.Expmap([-0.2; 0.1; -0.1; 2.3; 0.1; 0.1]));
							 | 
						||
| 
								 | 
							
								%initialEstimate.insert(3, Pose3.Expmap([0.1; -0.1; 0.1; 4.1; 0.1; -0.1]));
							 | 
						||
| 
								 | 
							
								%initialEstimate.print(sprintf('\nInitial estimate:\n  '));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								for i=1:3
							 | 
						||
| 
								 | 
							
								  deltaPosition = 0.5*rand(3,1) + [1;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
							 | 
						||
| 
								 | 
							
								  deltaRotation = 0.1*rand(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
							 | 
						||
| 
								 | 
							
								  deltaPose = Pose3.Expmap([deltaRotation; deltaPosition]);
							 | 
						||
| 
								 | 
							
								  currentPose = currentPose.compose(deltaPose);
							 | 
						||
| 
								 | 
							
								  initialEstimate.insert(i, currentPose);
							 | 
						||
| 
								 | 
							
								end
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
							 | 
						||
| 
								 | 
							
								optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
							 | 
						||
| 
								 | 
							
								result = optimizer.optimizeSafely();
							 | 
						||
| 
								 | 
							
								result.print(sprintf('\nFinal result:\n  '));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Plot trajectory and covariance ellipses
							 | 
						||
| 
								 | 
							
								cla;
							 | 
						||
| 
								 | 
							
								hold on;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								plot3DTrajectory(result, [], Marginals(graph, result));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								axis([-0.6 4.8 -1 1])
							 | 
						||
| 
								 | 
							
								axis equal
							 | 
						||
| 
								 | 
							
								view(2)
							 |