238 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			238 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  *  @file   testLinearEquality.cpp | ||
|  |  *  @brief  Unit tests for LinearEquality | ||
|  |  *  @author thduynguyen | ||
|  |  **/ | ||
|  | 
 | ||
|  | #include <gtsam_unstable/linear/LinearEquality.h>
 | ||
|  | #include <gtsam/base/TestableAssertions.h>
 | ||
|  | #include <gtsam/linear/HessianFactor.h>
 | ||
|  | #include <gtsam/linear/VectorValues.h>
 | ||
|  | #include <CppUnitLite/TestHarness.h>
 | ||
|  | 
 | ||
|  | #include <boost/assign/std/vector.hpp>
 | ||
|  | #include <boost/assign/list_of.hpp>
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | using namespace boost::assign; | ||
|  | 
 | ||
|  | GTSAM_CONCEPT_TESTABLE_INST(LinearEquality) | ||
|  | 
 | ||
|  | namespace { | ||
|  |   namespace simple { | ||
|  |     // Terms we'll use
 | ||
|  |     const vector<pair<Key, Matrix> > terms = list_of<pair<Key,Matrix> > | ||
|  |       (make_pair(5, Matrix3::Identity())) | ||
|  |       (make_pair(10, 2*Matrix3::Identity())) | ||
|  |       (make_pair(15, 3*Matrix3::Identity())); | ||
|  | 
 | ||
|  |     // RHS and sigmas
 | ||
|  |     const Vector b = (Vector(3) << 1., 2., 3.).finished(); | ||
|  |     const SharedDiagonal noise = noiseModel::Constrained::All(3); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(LinearEquality, constructors_and_accessors) | ||
|  | { | ||
|  |   using namespace simple; | ||
|  | 
 | ||
|  |   // Test for using different numbers of terms
 | ||
|  |   { | ||
|  |     // One term constructor
 | ||
|  |     LinearEquality expected( | ||
|  |       boost::make_iterator_range(terms.begin(), terms.begin() + 1), b, 0); | ||
|  |     LinearEquality actual(terms[0].first, terms[0].second, b, 0); | ||
|  |     EXPECT(assert_equal(expected, actual)); | ||
|  |     LONGS_EQUAL((long)terms[0].first, (long)actual.keys().back()); | ||
|  |     EXPECT(assert_equal(terms[0].second, actual.getA(actual.end() - 1))); | ||
|  |     EXPECT(assert_equal(b, expected.getb())); | ||
|  |     EXPECT(assert_equal(b, actual.getb())); | ||
|  |     EXPECT(assert_equal(*noise, *actual.get_model())); | ||
|  |   } | ||
|  |   { | ||
|  |     // Two term constructor
 | ||
|  |     LinearEquality expected( | ||
|  |       boost::make_iterator_range(terms.begin(), terms.begin() + 2), b, 0); | ||
|  |     LinearEquality actual(terms[0].first, terms[0].second, | ||
|  |       terms[1].first, terms[1].second, b, 0); | ||
|  |     EXPECT(assert_equal(expected, actual)); | ||
|  |     LONGS_EQUAL((long)terms[1].first, (long)actual.keys().back()); | ||
|  |     EXPECT(assert_equal(terms[1].second, actual.getA(actual.end() - 1))); | ||
|  |     EXPECT(assert_equal(b, expected.getb())); | ||
|  |     EXPECT(assert_equal(b, actual.getb())); | ||
|  |     EXPECT(assert_equal(*noise, *actual.get_model())); | ||
|  |   } | ||
|  |   { | ||
|  |     // Three term constructor
 | ||
|  |     LinearEquality expected( | ||
|  |       boost::make_iterator_range(terms.begin(), terms.begin() + 3), b, 0); | ||
|  |     LinearEquality actual(terms[0].first, terms[0].second, | ||
|  |       terms[1].first, terms[1].second, terms[2].first, terms[2].second, b, 0); | ||
|  |     EXPECT(assert_equal(expected, actual)); | ||
|  |     LONGS_EQUAL((long)terms[2].first, (long)actual.keys().back()); | ||
|  |     EXPECT(assert_equal(terms[2].second, actual.getA(actual.end() - 1))); | ||
|  |     EXPECT(assert_equal(b, expected.getb())); | ||
|  |     EXPECT(assert_equal(b, actual.getb())); | ||
|  |     EXPECT(assert_equal(*noise, *actual.get_model())); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(LinearEquality, Hessian_conversion) { | ||
|  |   HessianFactor hessian(0, (Matrix(4,4) << | ||
|  |         1.57,        2.695,         -1.1,        -2.35, | ||
|  |        2.695,      11.3125,        -0.65,      -10.225, | ||
|  |         -1.1,        -0.65,            1,          0.5, | ||
|  |        -2.35,      -10.225,          0.5,         9.25).finished(), | ||
|  |       (Vector(4) << -7.885, -28.5175, 2.75, 25.675).finished(), | ||
|  |       73.1725); | ||
|  | 
 | ||
|  |   try { | ||
|  |     LinearEquality actual(hessian); | ||
|  |     EXPECT(false); | ||
|  |   } | ||
|  |   catch (const std::runtime_error& exception) { | ||
|  |     EXPECT(true); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(LinearEquality, error) | ||
|  | { | ||
|  |   LinearEquality factor(simple::terms, simple::b, 0); | ||
|  | 
 | ||
|  |   VectorValues values; | ||
|  |   values.insert(5, Vector::Constant(3, 1.0)); | ||
|  |   values.insert(10, Vector::Constant(3, 0.5)); | ||
|  |   values.insert(15, Vector::Constant(3, 1.0/3.0)); | ||
|  | 
 | ||
|  |   Vector expected_unwhitened(3); expected_unwhitened << 2.0, 1.0, 0.0; | ||
|  |   Vector actual_unwhitened = factor.unweighted_error(values); | ||
|  |   EXPECT(assert_equal(expected_unwhitened, actual_unwhitened)); | ||
|  | 
 | ||
|  |   // whitened is meaningless in constraints
 | ||
|  |   Vector expected_whitened(3); expected_whitened = expected_unwhitened; | ||
|  |   Vector actual_whitened = factor.error_vector(values); | ||
|  |   EXPECT(assert_equal(expected_whitened, actual_whitened)); | ||
|  | 
 | ||
|  |   double expected_error = 0.0; | ||
|  |   double actual_error = factor.error(values); | ||
|  |   DOUBLES_EQUAL(expected_error, actual_error, 1e-10); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(LinearEquality, matrices_NULL) | ||
|  | { | ||
|  |   // Make sure everything works with NULL noise model
 | ||
|  |   LinearEquality factor(simple::terms, simple::b, 0); | ||
|  | 
 | ||
|  |   Matrix AExpected(3, 9); | ||
|  |   AExpected << simple::terms[0].second, simple::terms[1].second, simple::terms[2].second; | ||
|  |   Vector rhsExpected = simple::b; | ||
|  |   Matrix augmentedJacobianExpected(3, 10); | ||
|  |   augmentedJacobianExpected << AExpected, rhsExpected; | ||
|  | 
 | ||
|  |   // Whitened Jacobian
 | ||
|  |   EXPECT(assert_equal(AExpected, factor.jacobian().first)); | ||
|  |   EXPECT(assert_equal(rhsExpected, factor.jacobian().second)); | ||
|  |   EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobian())); | ||
|  | 
 | ||
|  |   // Unwhitened Jacobian
 | ||
|  |   EXPECT(assert_equal(AExpected, factor.jacobianUnweighted().first)); | ||
|  |   EXPECT(assert_equal(rhsExpected, factor.jacobianUnweighted().second)); | ||
|  |   EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobianUnweighted())); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(LinearEquality, matrices) | ||
|  | { | ||
|  |   // And now witgh a non-unit noise model
 | ||
|  |   LinearEquality factor(simple::terms, simple::b, 0); | ||
|  | 
 | ||
|  |   Matrix jacobianExpected(3, 9); | ||
|  |   jacobianExpected << simple::terms[0].second, simple::terms[1].second, simple::terms[2].second; | ||
|  |   Vector rhsExpected = simple::b; | ||
|  |   Matrix augmentedJacobianExpected(3, 10); | ||
|  |   augmentedJacobianExpected << jacobianExpected, rhsExpected; | ||
|  | 
 | ||
|  |   Matrix augmentedHessianExpected = | ||
|  |     augmentedJacobianExpected.transpose() * simple::noise->R().transpose() | ||
|  |     * simple::noise->R() * augmentedJacobianExpected; | ||
|  | 
 | ||
|  |   // Whitened Jacobian
 | ||
|  |   EXPECT(assert_equal(jacobianExpected, factor.jacobian().first)); | ||
|  |   EXPECT(assert_equal(rhsExpected, factor.jacobian().second)); | ||
|  |   EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobian())); | ||
|  | 
 | ||
|  |   // Unwhitened Jacobian
 | ||
|  |   EXPECT(assert_equal(jacobianExpected, factor.jacobianUnweighted().first)); | ||
|  |   EXPECT(assert_equal(rhsExpected, factor.jacobianUnweighted().second)); | ||
|  |   EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobianUnweighted())); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(LinearEquality, operators ) | ||
|  | { | ||
|  |   Matrix I = eye(2); | ||
|  |   Vector b = (Vector(2) << 0.2,-0.1).finished(); | ||
|  |   LinearEquality lf(1, -I, 2, I, b, 0); | ||
|  | 
 | ||
|  |   VectorValues c; | ||
|  |   c.insert(1, (Vector(2) << 10.,20.).finished()); | ||
|  |   c.insert(2, (Vector(2) << 30.,60.).finished()); | ||
|  | 
 | ||
|  |   // test A*x
 | ||
|  |   Vector expectedE = (Vector(2) << 20.,40.).finished(); | ||
|  |   Vector actualE = lf * c; | ||
|  |   EXPECT(assert_equal(expectedE, actualE)); | ||
|  | 
 | ||
|  |   // test A^e
 | ||
|  |   VectorValues expectedX; | ||
|  |   expectedX.insert(1, (Vector(2) << -20.,-40.).finished()); | ||
|  |   expectedX.insert(2, (Vector(2) << 20., 40.).finished()); | ||
|  |   VectorValues actualX = VectorValues::Zero(expectedX); | ||
|  |   lf.transposeMultiplyAdd(1.0, actualE, actualX); | ||
|  |   EXPECT(assert_equal(expectedX, actualX)); | ||
|  | 
 | ||
|  |   // test gradient at zero
 | ||
|  |   Matrix A; Vector b2; boost::tie(A,b2) = lf.jacobian(); | ||
|  |   VectorValues expectedG; | ||
|  |   expectedG.insert(1, (Vector(2) <<  0.2, -0.1).finished()); | ||
|  |   expectedG.insert(2, (Vector(2) << -0.2,  0.1).finished()); | ||
|  |   VectorValues actualG = lf.gradientAtZero(); | ||
|  |   EXPECT(assert_equal(expectedG, actualG)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(LinearEquality, default_error ) | ||
|  | { | ||
|  |   LinearEquality f; | ||
|  |   double actual = f.error(VectorValues()); | ||
|  |   DOUBLES_EQUAL(0.0, actual, 1e-15); | ||
|  | } | ||
|  | 
 | ||
|  | //* ************************************************************************* */
 | ||
|  | TEST(LinearEquality, empty ) | ||
|  | { | ||
|  |   // create an empty factor
 | ||
|  |   LinearEquality f; | ||
|  |   EXPECT(f.empty()); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main() { TestResult tr; return TestRegistry::runAllTests(tr);} | ||
|  | /* ************************************************************************* */ |