| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation,  | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * @file    BatchFixedLagSmoother.cpp | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  |  * @brief   An LM-based fixed-lag smoother. | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |  * | 
					
						
							|  |  |  |  * @author  Michael Kaess, Stephen Williams | 
					
						
							|  |  |  |  * @date    Oct 14, 2012 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  | #include <gtsam/nonlinear/LinearContainerFactor.h>
 | 
					
						
							|  |  |  | #include <gtsam/linear/GaussianJunctionTree.h>
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | #include <gtsam/linear/GaussianFactorGraph.h>
 | 
					
						
							|  |  |  | #include <gtsam/linear/GaussianFactor.h>
 | 
					
						
							|  |  |  | #include <gtsam/inference/inference.h>
 | 
					
						
							|  |  |  | #include <gtsam/base/debug.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const { | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  |   FixedLagSmoother::print(s, keyFormatter); | 
					
						
							|  |  |  |   // TODO: What else to print?
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  | bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs, double tol) const { | 
					
						
							|  |  |  |   const BatchFixedLagSmoother* e =  dynamic_cast<const BatchFixedLagSmoother*> (&rhs); | 
					
						
							|  |  |  |   return e != NULL | 
					
						
							|  |  |  |       && FixedLagSmoother::equals(*e, tol) | 
					
						
							|  |  |  |       && factors_.equals(e->factors_, tol) | 
					
						
							|  |  |  |       && theta_.equals(e->theta_, tol); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  | FixedLagSmoother::Result BatchFixedLagSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta, const KeyTimestampMap& timestamps) { | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   const bool debug = ISDEBUG("BatchFixedLagSmoother update"); | 
					
						
							|  |  |  |   if(debug) { | 
					
						
							|  |  |  |     std::cout << "BatchFixedLagSmoother::update() START" << std::endl; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Add the new factors
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   insertFactors(newFactors); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // Add the new variables
 | 
					
						
							|  |  |  |   theta_.insert(newTheta); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Add new variables to the end of the ordering
 | 
					
						
							|  |  |  |   BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) { | 
					
						
							|  |  |  |     ordering_.push_back(key_value.key); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Augment Delta
 | 
					
						
							|  |  |  |   std::vector<size_t> dims; | 
					
						
							|  |  |  |   dims.reserve(newTheta.size()); | 
					
						
							|  |  |  |   BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) { | 
					
						
							|  |  |  |     dims.push_back(key_value.value.dim()); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   delta_.append(dims); | 
					
						
							|  |  |  |   for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) { | 
					
						
							|  |  |  |     delta_[i].setZero(); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |   // Update the Timestamps associated with the factor keys
 | 
					
						
							|  |  |  |   updateKeyTimestampMap(timestamps); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Get current timestamp
 | 
					
						
							|  |  |  |   double current_timestamp = getCurrentTimestamp(); | 
					
						
							|  |  |  |   if(debug) std::cout << "Current Timestamp: " << current_timestamp << std::endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Find the set of variables to be marginalized out
 | 
					
						
							|  |  |  |   std::set<Key> marginalizableKeys = findKeysBefore(current_timestamp - smootherLag_); | 
					
						
							|  |  |  |   if(debug) { | 
					
						
							|  |  |  |     std::cout << "Marginalizable Keys: "; | 
					
						
							|  |  |  |     BOOST_FOREACH(Key key, marginalizableKeys) { | 
					
						
							|  |  |  |       std::cout << DefaultKeyFormatter(key) << " "; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     std::cout << std::endl; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Reorder
 | 
					
						
							|  |  |  |   reorder(marginalizableKeys); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Optimize
 | 
					
						
							|  |  |  |   Result result; | 
					
						
							|  |  |  |   if(theta_.size() > 0) { | 
					
						
							|  |  |  |     result = optimize(); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Marginalize out old variables.
 | 
					
						
							|  |  |  |   if(marginalizableKeys.size() > 0) { | 
					
						
							|  |  |  |     marginalize(marginalizableKeys); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   if(debug) { | 
					
						
							|  |  |  |     std::cout << "BatchFixedLagSmoother::update() FINISH" << std::endl; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return result; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  | void BatchFixedLagSmoother::insertFactors(const NonlinearFactorGraph& newFactors) { | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |   BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, newFactors) { | 
					
						
							|  |  |  |     Index index; | 
					
						
							|  |  |  |     // Insert the factor into an existing hole in the factor graph, if possible
 | 
					
						
							|  |  |  |     if(availableSlots_.size() > 0) { | 
					
						
							|  |  |  |       index = availableSlots_.front(); | 
					
						
							|  |  |  |       availableSlots_.pop(); | 
					
						
							|  |  |  |       factors_.replace(index, factor); | 
					
						
							|  |  |  |     } else { | 
					
						
							|  |  |  |       index = factors_.size(); | 
					
						
							|  |  |  |       factors_.push_back(factor); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     // Update the FactorIndex
 | 
					
						
							|  |  |  |     BOOST_FOREACH(Key key, *factor) { | 
					
						
							|  |  |  |       factorIndex_[key].insert(index); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::removeFactors(const std::set<size_t>& deleteFactors) { | 
					
						
							|  |  |  |   BOOST_FOREACH(size_t slot, deleteFactors) { | 
					
						
							|  |  |  |     if(factors_.at(slot)) { | 
					
						
							|  |  |  |       // Remove references to this factor from the FactorIndex
 | 
					
						
							|  |  |  |       BOOST_FOREACH(Key key, *(factors_.at(slot))) { | 
					
						
							|  |  |  |         factorIndex_[key].erase(slot); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       // Remove the factor from the factor graph
 | 
					
						
							|  |  |  |       factors_.remove(slot); | 
					
						
							|  |  |  |       // Add the factor's old slot to the list of available slots
 | 
					
						
							|  |  |  |       availableSlots_.push(slot); | 
					
						
							|  |  |  |     } else { | 
					
						
							|  |  |  |       // TODO: Throw an error??
 | 
					
						
							|  |  |  |       std::cout << "Attempting to remove a factor from slot " << slot << ", but it is already NULL." << std::endl; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::eraseKeys(const std::set<Key>& keys) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   BOOST_FOREACH(Key key, keys) { | 
					
						
							|  |  |  |     // Erase the key from the values
 | 
					
						
							|  |  |  |     theta_.erase(key); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Erase the key from the factor index
 | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  |     factorIndex_.erase(key); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     // Erase the key from the set of linearized keys
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |     if(linearKeys_.exists(key)) { | 
					
						
							|  |  |  |       linearKeys_.erase(key); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  |   eraseKeyTimestampMap(keys); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Permute the ordering such that the removed keys are at the end.
 | 
					
						
							|  |  |  |   // This is a prerequisite for removing them from several structures
 | 
					
						
							|  |  |  |   std::vector<Index> toBack; | 
					
						
							|  |  |  |   BOOST_FOREACH(Key key, keys) { | 
					
						
							|  |  |  |     toBack.push_back(ordering_.at(key)); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   Permutation forwardPermutation = Permutation::PushToBack(toBack, ordering_.size()); | 
					
						
							|  |  |  |   ordering_.permuteInPlace(forwardPermutation); | 
					
						
							|  |  |  |   delta_.permuteInPlace(forwardPermutation); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Remove marginalized keys from the ordering and delta
 | 
					
						
							|  |  |  |   for(size_t i = 0; i < keys.size(); ++i) { | 
					
						
							|  |  |  |     ordering_.pop_back(); | 
					
						
							|  |  |  |     delta_.pop_back(); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  | } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  | void BatchFixedLagSmoother::reorder(const std::set<Key>& marginalizeKeys) { | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Calculate a variable index
 | 
					
						
							|  |  |  |   VariableIndex variableIndex(*factors_.symbolic(ordering_), ordering_.size()); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
 | 
					
						
							|  |  |  |   int group0 = 0; | 
					
						
							|  |  |  |   int group1 = marginalizeKeys.size() > 0 ? 1 : 0; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Initialize all variables to group1
 | 
					
						
							|  |  |  |   std::vector<int> cmember(variableIndex.size(), group1); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Set all of the marginalizeKeys to Group0
 | 
					
						
							|  |  |  |   if(marginalizeKeys.size() > 0) { | 
					
						
							|  |  |  |     BOOST_FOREACH(Key key, marginalizeKeys) { | 
					
						
							|  |  |  |       cmember[ordering_.at(key)] = group0; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Generate the permutation
 | 
					
						
							|  |  |  |   Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex, cmember); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Permute the ordering, variable index, and deltas
 | 
					
						
							|  |  |  |   ordering_.permuteInPlace(forwardPermutation); | 
					
						
							|  |  |  |   delta_.permuteInPlace(forwardPermutation); | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | FixedLagSmoother::Result BatchFixedLagSmoother::optimize() { | 
					
						
							|  |  |  |   // Create output result structure
 | 
					
						
							|  |  |  |   Result result; | 
					
						
							|  |  |  |   result.nonlinearVariables = theta_.size() - linearKeys_.size(); | 
					
						
							|  |  |  |   result.linearVariables = linearKeys_.size(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Set optimization parameters
 | 
					
						
							|  |  |  |   double lambda = parameters_.lambdaInitial; | 
					
						
							|  |  |  |   double lambdaFactor = parameters_.lambdaFactor; | 
					
						
							|  |  |  |   double lambdaUpperBound = parameters_.lambdaUpperBound; | 
					
						
							|  |  |  |   double lambdaLowerBound = 0.5 / parameters_.lambdaUpperBound; | 
					
						
							|  |  |  |   size_t maxIterations = parameters_.maxIterations; | 
					
						
							|  |  |  |   double relativeErrorTol = parameters_.relativeErrorTol; | 
					
						
							|  |  |  |   double absoluteErrorTol = parameters_.absoluteErrorTol; | 
					
						
							|  |  |  |   double errorTol = parameters_.errorTol; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create a Values that holds the current evaluation point
 | 
					
						
							|  |  |  |   Values evalpoint = theta_.retract(delta_, ordering_); | 
					
						
							|  |  |  |   result.error = factors_.error(evalpoint); | 
					
						
							| 
									
										
										
										
											2013-05-21 22:57:40 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Use a custom optimization loop so the linearization points can be controlled
 | 
					
						
							|  |  |  |   double previousError; | 
					
						
							|  |  |  |   VectorValues newDelta; | 
					
						
							|  |  |  |   do { | 
					
						
							|  |  |  |     previousError = result.error; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |     // Do next iteration
 | 
					
						
							|  |  |  |     gttic(optimizer_iteration); | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       // Linearize graph around the linearization point
 | 
					
						
							|  |  |  |       GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // Keep increasing lambda until we make make progress
 | 
					
						
							|  |  |  |       while(true) { | 
					
						
							|  |  |  |         // Add prior factors at the current solution
 | 
					
						
							|  |  |  |         gttic(damp); | 
					
						
							|  |  |  |         GaussianFactorGraph dampedFactorGraph(linearFactorGraph); | 
					
						
							|  |  |  |         dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size()); | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           // for each of the variables, add a prior at the current solution
 | 
					
						
							|  |  |  |           double sigma = 1.0 / std::sqrt(lambda); | 
					
						
							|  |  |  |           for(size_t j=0; j<delta_.size(); ++j) { | 
					
						
							|  |  |  |             size_t dim = delta_[j].size(); | 
					
						
							|  |  |  |             Matrix A = eye(dim); | 
					
						
							|  |  |  |             Vector b = delta_[j]; | 
					
						
							|  |  |  |             SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma); | 
					
						
							|  |  |  |             GaussianFactor::shared_ptr prior(new JacobianFactor(j, A, b, model)); | 
					
						
							|  |  |  |             dampedFactorGraph.push_back(prior); | 
					
						
							|  |  |  |           } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |         } | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |         gttoc(damp); | 
					
						
							|  |  |  |         result.intermediateSteps++; | 
					
						
							| 
									
										
										
										
											2013-05-21 22:57:40 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |         gttic(solve); | 
					
						
							|  |  |  |         // Solve Damped Gaussian Factor Graph
 | 
					
						
							|  |  |  |         newDelta = GaussianJunctionTree(dampedFactorGraph).optimize(parameters_.getEliminationFunction()); | 
					
						
							|  |  |  |         // update the evalpoint with the new delta
 | 
					
						
							|  |  |  |         evalpoint = theta_.retract(newDelta, ordering_); | 
					
						
							|  |  |  |         gttoc(solve); | 
					
						
							| 
									
										
										
										
											2013-05-21 22:57:40 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |         // Evaluate the new error
 | 
					
						
							|  |  |  |         gttic(compute_error); | 
					
						
							|  |  |  |         double error = factors_.error(evalpoint); | 
					
						
							|  |  |  |         gttoc(compute_error); | 
					
						
							| 
									
										
										
										
											2013-05-21 22:57:40 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |         if(error < result.error) { | 
					
						
							|  |  |  |           // Keep this change
 | 
					
						
							|  |  |  |           // Update the error value
 | 
					
						
							|  |  |  |           result.error = error; | 
					
						
							|  |  |  |           // Update the linearization point
 | 
					
						
							|  |  |  |           theta_ = evalpoint; | 
					
						
							|  |  |  |           // Reset the deltas to zeros
 | 
					
						
							|  |  |  |           delta_.setZero(); | 
					
						
							|  |  |  |           // Put the linearization points and deltas back for specific variables
 | 
					
						
							|  |  |  |           if(enforceConsistency_ && (linearKeys_.size() > 0)) { | 
					
						
							|  |  |  |             theta_.update(linearKeys_); | 
					
						
							|  |  |  |             BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, linearKeys_) { | 
					
						
							|  |  |  |               Index index = ordering_.at(key_value.key); | 
					
						
							|  |  |  |               delta_.at(index) = newDelta.at(index); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           // Decrease lambda for next time
 | 
					
						
							|  |  |  |           lambda /= lambdaFactor; | 
					
						
							|  |  |  |           if(lambda < lambdaLowerBound) { | 
					
						
							|  |  |  |             lambda = lambdaLowerBound; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           // End this lambda search iteration
 | 
					
						
							|  |  |  |           break; | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |           // Reject this change
 | 
					
						
							|  |  |  |           // Increase lambda and continue searching
 | 
					
						
							|  |  |  |           lambda *= lambdaFactor; | 
					
						
							|  |  |  |           if(lambda > lambdaUpperBound) { | 
					
						
							|  |  |  |             // The maximum lambda has been used. Print a warning and end the search.
 | 
					
						
							|  |  |  |             std::cout << "Warning:  Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << std::endl; | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |           } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |         } | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |       } // end while
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |     } | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |     gttoc(optimizer_iteration); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |     result.iterations++; | 
					
						
							|  |  |  |   } while(result.iterations < maxIterations && | 
					
						
							|  |  |  |       !checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol, previousError, result.error, NonlinearOptimizerParams::SILENT)); | 
					
						
							| 
									
										
										
										
											2013-05-21 22:57:40 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   return result; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) { | 
					
						
							|  |  |  |   // In order to marginalize out the selected variables, the factors involved in those variables
 | 
					
						
							|  |  |  |   // must be identified and removed. Also, the effect of those removed factors on the
 | 
					
						
							|  |  |  |   // remaining variables needs to be accounted for. This will be done with linear container factors
 | 
					
						
							|  |  |  |   // from the result of a partial elimination. This function removes the marginalized factors and
 | 
					
						
							|  |  |  |   // adds the linearized factors back in.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Calculate marginal factors on the remaining variables (after marginalizing 'marginalizeKeys')
 | 
					
						
							|  |  |  |   // Note: It is assumed the ordering already has these keys first
 | 
					
						
							|  |  |  |   // Create the linear factor graph
 | 
					
						
							|  |  |  |   GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create a variable index
 | 
					
						
							|  |  |  |   VariableIndex variableIndex(linearFactorGraph, ordering_.size()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Use the variable Index to mark the factors that will be marginalized
 | 
					
						
							|  |  |  |   std::set<size_t> removedFactorSlots; | 
					
						
							|  |  |  |   BOOST_FOREACH(Key key, marginalizeKeys) { | 
					
						
							|  |  |  |     const FastList<size_t>& slots = variableIndex[ordering_.at(key)]; | 
					
						
							|  |  |  |     removedFactorSlots.insert(slots.begin(), slots.end()); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Construct an elimination tree to perform sparse elimination
 | 
					
						
							|  |  |  |   std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex) ); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // This is a tree. Only the top-most nodes/indices need to be eliminated; all of the children will be eliminated automatically
 | 
					
						
							|  |  |  |   // Find the subset of nodes/keys that must be eliminated
 | 
					
						
							|  |  |  |   std::set<Index> indicesToEliminate; | 
					
						
							|  |  |  |   BOOST_FOREACH(Key key, marginalizeKeys) { | 
					
						
							|  |  |  |     indicesToEliminate.insert(ordering_.at(key)); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   BOOST_FOREACH(Key key, marginalizeKeys) { | 
					
						
							|  |  |  |     EliminationForest::removeChildrenIndices(indicesToEliminate, forest.at(ordering_.at(key))); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Eliminate each top-most key, returning a Gaussian Factor on some of the remaining variables
 | 
					
						
							|  |  |  |   // Convert the marginal factors into Linear Container Factors
 | 
					
						
							|  |  |  |   // Add the marginal factor variables to the separator
 | 
					
						
							|  |  |  |   NonlinearFactorGraph marginalFactors; | 
					
						
							|  |  |  |   BOOST_FOREACH(Index index, indicesToEliminate) { | 
					
						
							|  |  |  |     GaussianFactor::shared_ptr gaussianFactor = forest.at(index)->eliminateRecursive(parameters_.getEliminationFunction()); | 
					
						
							|  |  |  |     if(gaussianFactor->size() > 0) { | 
					
						
							|  |  |  |       LinearContainerFactor::shared_ptr marginalFactor(new LinearContainerFactor(gaussianFactor, ordering_, theta_)); | 
					
						
							|  |  |  |       marginalFactors.push_back(marginalFactor); | 
					
						
							|  |  |  |       // Add the keys associated with the marginal factor to the separator values
 | 
					
						
							|  |  |  |       BOOST_FOREACH(Key key, *marginalFactor) { | 
					
						
							|  |  |  |         if(!linearKeys_.exists(key)) { | 
					
						
							|  |  |  |           linearKeys_.insert(key, theta_.at(key)); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   insertFactors(marginalFactors); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Remove the marginalized variables and factors from the filter
 | 
					
						
							|  |  |  |   // Remove marginalized factors from the factor graph
 | 
					
						
							|  |  |  |   removeFactors(removedFactorSlots); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  |   // Remove marginalized keys from the system
 | 
					
						
							|  |  |  |   eraseKeys(marginalizeKeys); | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::PrintKeySet(const std::set<Key>& keys, const std::string& label) { | 
					
						
							|  |  |  |   std::cout << label; | 
					
						
							|  |  |  |   BOOST_FOREACH(gtsam::Key key, keys) { | 
					
						
							|  |  |  |     std::cout << " " << gtsam::DefaultKeyFormatter(key); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   std::cout << std::endl; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::PrintSymbolicFactor(const NonlinearFactor::shared_ptr& factor) { | 
					
						
							|  |  |  |   std::cout << "f("; | 
					
						
							|  |  |  |   if(factor) { | 
					
						
							|  |  |  |     BOOST_FOREACH(Key key, factor->keys()) { | 
					
						
							|  |  |  |       std::cout << " " << gtsam::DefaultKeyFormatter(key); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |     } | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  |   } else { | 
					
						
							|  |  |  |     std::cout << " NULL"; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   std::cout << " )" << std::endl; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor, const Ordering& ordering) { | 
					
						
							|  |  |  |   std::cout << "f("; | 
					
						
							|  |  |  |   BOOST_FOREACH(Index index, factor->keys()) { | 
					
						
							|  |  |  |     std::cout << " " << index << "[" << gtsam::DefaultKeyFormatter(ordering.key(index)) << "]"; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   std::cout << " )" << std::endl; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::PrintSymbolicGraph(const NonlinearFactorGraph& graph, const std::string& label) { | 
					
						
							|  |  |  |   std::cout << label << std::endl; | 
					
						
							|  |  |  |   BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, graph) { | 
					
						
							|  |  |  |     PrintSymbolicFactor(factor); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  | } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-28 04:23:47 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph, const Ordering& ordering, const std::string& label) { | 
					
						
							|  |  |  |   std::cout << label << std::endl; | 
					
						
							|  |  |  |   BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, graph) { | 
					
						
							|  |  |  |     PrintSymbolicFactor(factor, ordering); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-04-26 02:10:21 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | std::vector<Index> BatchFixedLagSmoother::EliminationForest::ComputeParents(const VariableIndex& structure) { | 
					
						
							|  |  |  |   // Number of factors and variables
 | 
					
						
							|  |  |  |   const size_t m = structure.nFactors(); | 
					
						
							|  |  |  |   const size_t n = structure.size(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static const Index none = std::numeric_limits<Index>::max(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Allocate result parent vector and vector of last factor columns
 | 
					
						
							|  |  |  |   std::vector<Index> parents(n, none); | 
					
						
							|  |  |  |   std::vector<Index> prevCol(m, none); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // for column j \in 1 to n do
 | 
					
						
							|  |  |  |   for (Index j = 0; j < n; j++) { | 
					
						
							|  |  |  |     // for row i \in Struct[A*j] do
 | 
					
						
							|  |  |  |     BOOST_FOREACH(const size_t i, structure[j]) { | 
					
						
							|  |  |  |       if (prevCol[i] != none) { | 
					
						
							|  |  |  |         Index k = prevCol[i]; | 
					
						
							|  |  |  |         // find root r of the current tree that contains k
 | 
					
						
							|  |  |  |         Index r = k; | 
					
						
							|  |  |  |         while (parents[r] != none) | 
					
						
							|  |  |  |           r = parents[r]; | 
					
						
							|  |  |  |         if (r != j) parents[r] = j; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       prevCol[i] = j; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return parents; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | std::vector<BatchFixedLagSmoother::EliminationForest::shared_ptr> BatchFixedLagSmoother::EliminationForest::Create(const GaussianFactorGraph& factorGraph, const VariableIndex& structure) { | 
					
						
							|  |  |  |   // Compute the tree structure
 | 
					
						
							|  |  |  |   std::vector<Index> parents(ComputeParents(structure)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Number of variables
 | 
					
						
							|  |  |  |   const size_t n = structure.size(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static const Index none = std::numeric_limits<Index>::max(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create tree structure
 | 
					
						
							|  |  |  |   std::vector<shared_ptr> trees(n); | 
					
						
							|  |  |  |   for (Index k = 1; k <= n; k++) { | 
					
						
							|  |  |  |     Index j = n - k;  // Start at the last variable and loop down to 0
 | 
					
						
							|  |  |  |     trees[j].reset(new EliminationForest(j));  // Create a new node on this variable
 | 
					
						
							|  |  |  |     if (parents[j] != none)  // If this node has a parent, add it to the parent's children
 | 
					
						
							|  |  |  |       trees[parents[j]]->add(trees[j]); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Hang factors in right places
 | 
					
						
							|  |  |  |   BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, factorGraph) { | 
					
						
							|  |  |  |     if(factor && factor->size() > 0) { | 
					
						
							|  |  |  |       Index j = *std::min_element(factor->begin(), factor->end()); | 
					
						
							|  |  |  |       if(j < structure.size()) | 
					
						
							|  |  |  |         trees[j]->add(factor); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return trees; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | GaussianFactor::shared_ptr BatchFixedLagSmoother::EliminationForest::eliminateRecursive(GaussianFactorGraph::Eliminate function) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create the list of factors to be eliminated, initially empty, and reserve space
 | 
					
						
							|  |  |  |   GaussianFactorGraph factors; | 
					
						
							|  |  |  |   factors.reserve(this->factors_.size() + this->subTrees_.size()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Add all factors associated with the current node
 | 
					
						
							|  |  |  |   factors.push_back(this->factors_.begin(), this->factors_.end()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // for all subtrees, eliminate into Bayes net and a separator factor, added to [factors]
 | 
					
						
							|  |  |  |   BOOST_FOREACH(const shared_ptr& child, subTrees_) | 
					
						
							|  |  |  |     factors.push_back(child->eliminateRecursive(function)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Combine all factors (from this node and from subtrees) into a joint factor
 | 
					
						
							|  |  |  |   GaussianFactorGraph::EliminationResult eliminated(function(factors, 1)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return eliminated.second; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void BatchFixedLagSmoother::EliminationForest::removeChildrenIndices(std::set<Index>& indices, const BatchFixedLagSmoother::EliminationForest::shared_ptr& tree) { | 
					
						
							|  |  |  |   BOOST_FOREACH(const EliminationForest::shared_ptr& child, tree->children()) { | 
					
						
							|  |  |  |     indices.erase(child->key()); | 
					
						
							|  |  |  |     removeChildrenIndices(indices, child); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | } /// namespace gtsam
 |