153 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			153 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Matlab
		
	
	
| 
								 | 
							
								close all
							 | 
						||
| 
								 | 
							
								clc
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import gtsam.*;
							 | 
						||
| 
								 | 
							
								disp('Example of application of ISAM2 for visual-inertial navigation on the KITTI VISION BENCHMARK SUITE (http://www.computervisiononline.com/dataset/kitti-vision-benchmark-suite)')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Read metadata and compute relative sensor pose transforms
							 | 
						||
| 
								 | 
							
								% IMU metadata
							 | 
						||
| 
								 | 
							
								disp('-- Reading sensor metadata')
							 | 
						||
| 
								 | 
							
								IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
							 | 
						||
| 
								 | 
							
								IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
							 | 
						||
| 
								 | 
							
								IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
							 | 
						||
| 
								 | 
							
								  IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
							 | 
						||
| 
								 | 
							
								if ~IMUinBody.equals(Pose3, 1e-5)
							 | 
						||
| 
								 | 
							
								  error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same';
							 | 
						||
| 
								 | 
							
								end
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% VO metadata
							 | 
						||
| 
								 | 
							
								VO_metadata = importdata('KittiRelativePose_metadata.txt');
							 | 
						||
| 
								 | 
							
								VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
							 | 
						||
| 
								 | 
							
								VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
							 | 
						||
| 
								 | 
							
								  VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
							 | 
						||
| 
								 | 
							
								VOinIMU = IMUinBody.inverse().compose(VOinBody);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Read data and change coordinate frame of GPS and VO measurements to IMU frame
							 | 
						||
| 
								 | 
							
								disp('-- Reading sensor data from file')
							 | 
						||
| 
								 | 
							
								% IMU data
							 | 
						||
| 
								 | 
							
								IMU_data = importdata('KittiEquivBiasedImu.txt');
							 | 
						||
| 
								 | 
							
								IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
							 | 
						||
| 
								 | 
							
								imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
							 | 
						||
| 
								 | 
							
								[IMU_data.acc_omega] = deal(imum{:});
							 | 
						||
| 
								 | 
							
								clear imum
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% VO data
							 | 
						||
| 
								 | 
							
								VO_data = importdata('KittiRelativePose.txt');
							 | 
						||
| 
								 | 
							
								VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2);
							 | 
						||
| 
								 | 
							
								% Merge relative pose fields and convert to Pose3
							 | 
						||
| 
								 | 
							
								logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ];
							 | 
						||
| 
								 | 
							
								logposes = num2cell(logposes, 2);
							 | 
						||
| 
								 | 
							
								relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes);
							 | 
						||
| 
								 | 
							
								relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes);
							 | 
						||
| 
								 | 
							
								[VO_data.RelativePose] = deal(relposes{:});
							 | 
						||
| 
								 | 
							
								VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' });
							 | 
						||
| 
								 | 
							
								noiseModelVO = noiseModel.Diagonal.Sigmas([ VO_metadata.RotationSigma * [1;1;1]; VO_metadata.TranslationSigma * [1;1;1] ]);
							 | 
						||
| 
								 | 
							
								clear logposes relposes
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Get initial conditions for the estimated trajectory
							 | 
						||
| 
								 | 
							
								currentPoseGlobal = Pose3;
							 | 
						||
| 
								 | 
							
								currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
							 | 
						||
| 
								 | 
							
								currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
							 | 
						||
| 
								 | 
							
								sigma_init_x = noiseModel.Isotropic.Sigmas([ 1.0; 1.0; 0.01; 0.01; 0.01; 0.01 ]);
							 | 
						||
| 
								 | 
							
								sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
							 | 
						||
| 
								 | 
							
								sigma_init_b = noiseModel.Isotropic.Sigmas([ 0.100; 0.100; 0.100; 5.00e-05; 5.00e-05; 5.00e-05 ]);
							 | 
						||
| 
								 | 
							
								sigma_between_b = [ IMU_metadata.AccelerometerBiasSigma * ones(3,1); IMU_metadata.GyroscopeBiasSigma * ones(3,1) ];
							 | 
						||
| 
								 | 
							
								g = [0;0;-9.8];
							 | 
						||
| 
								 | 
							
								w_coriolis = [0;0;0];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Solver object
							 | 
						||
| 
								 | 
							
								isamParams = ISAM2Params;
							 | 
						||
| 
								 | 
							
								isamParams.setFactorization('CHOLESKY');
							 | 
						||
| 
								 | 
							
								isamParams.setRelinearizeSkip(10);
							 | 
						||
| 
								 | 
							
								isam = gtsam.ISAM2(isamParams);
							 | 
						||
| 
								 | 
							
								newFactors = NonlinearFactorGraph;
							 | 
						||
| 
								 | 
							
								newValues = Values;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								%% Main loop:
							 | 
						||
| 
								 | 
							
								% (1) we read the measurements
							 | 
						||
| 
								 | 
							
								% (2) we create the corresponding factors in the graph
							 | 
						||
| 
								 | 
							
								% (3) we solve the graph to obtain and optimal estimate of robot trajectory
							 | 
						||
| 
								 | 
							
								timestamps = [VO_data.Time]';
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								timestamps = timestamps(15:end,:); % there seem to be issues with the initial IMU measurements
							 | 
						||
| 
								 | 
							
								IMUtimes = [IMU_data.Time];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								disp('-- Starting main loop: inference is performed at each time step, but we plot trajectory every 100 steps')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								for measurementIndex = 1:length(timestamps)
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  % At each non=IMU measurement we initialize a new node in the graph
							 | 
						||
| 
								 | 
							
								  currentPoseKey = symbol('x',measurementIndex);
							 | 
						||
| 
								 | 
							
								  currentVelKey =  symbol('v',measurementIndex);
							 | 
						||
| 
								 | 
							
								  currentBiasKey = symbol('b',measurementIndex);
							 | 
						||
| 
								 | 
							
								  t = timestamps(measurementIndex, 1);
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  if measurementIndex == 1
							 | 
						||
| 
								 | 
							
								    %% Create initial estimate and prior on initial pose, velocity, and biases
							 | 
						||
| 
								 | 
							
								    newValues.insert(currentPoseKey, currentPoseGlobal);
							 | 
						||
| 
								 | 
							
								    newValues.insert(currentVelKey, currentVelocityGlobal);
							 | 
						||
| 
								 | 
							
								    newValues.insert(currentBiasKey, currentBias);
							 | 
						||
| 
								 | 
							
								    newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
							 | 
						||
| 
								 | 
							
								    newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
							 | 
						||
| 
								 | 
							
								    newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
							 | 
						||
| 
								 | 
							
								  else
							 | 
						||
| 
								 | 
							
								    t_previous = timestamps(measurementIndex-1, 1);
							 | 
						||
| 
								 | 
							
								    %% Summarize IMU data between the previous GPS measurement and now
							 | 
						||
| 
								 | 
							
								    IMUindices = find(IMUtimes >= t_previous & IMUtimes <= t);
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
							 | 
						||
| 
								 | 
							
								      currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
							 | 
						||
| 
								 | 
							
								      IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    for imuIndex = IMUindices
							 | 
						||
| 
								 | 
							
								      accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ];
							 | 
						||
| 
								 | 
							
								      omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ];
							 | 
						||
| 
								 | 
							
								      deltaT = IMU_data(imuIndex).dt;
							 | 
						||
| 
								 | 
							
								      currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
							 | 
						||
| 
								 | 
							
								    end
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    % Create IMU factor
							 | 
						||
| 
								 | 
							
								    newFactors.add(ImuFactor( ...
							 | 
						||
| 
								 | 
							
								      currentPoseKey-1, currentVelKey-1, ...
							 | 
						||
| 
								 | 
							
								      currentPoseKey, currentVelKey, ...
							 | 
						||
| 
								 | 
							
								      currentBiasKey, currentSummarizedMeasurement, g, w_coriolis));
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    % LC: sigma_init_b is wrong: this should be some uncertainty on bias evolution given in the IMU metadata
							 | 
						||
| 
								 | 
							
								    newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), ...
							 | 
						||
| 
								 | 
							
								      noiseModel.Diagonal.Sigmas(sqrt(numel(IMUindices)) * sigma_between_b)));
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    %% Create VO factor
							 | 
						||
| 
								 | 
							
								      VOpose = VO_data(measurementIndex).RelativePose;
							 | 
						||
| 
								 | 
							
								      newFactors.add(BetweenFactorPose3(currentPoseKey - 1, currentPoseKey, VOpose, noiseModelVO));
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    % Add initial value
							 | 
						||
| 
								 | 
							
								    newValues.insert(currentPoseKey, currentPoseGlobal.compose(VOpose));
							 | 
						||
| 
								 | 
							
								    newValues.insert(currentVelKey, currentVelocityGlobal);
							 | 
						||
| 
								 | 
							
								    newValues.insert(currentBiasKey, currentBias);
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    % Update solver
							 | 
						||
| 
								 | 
							
								    % =======================================================================
							 | 
						||
| 
								 | 
							
								    isam.update(newFactors, newValues);
							 | 
						||
| 
								 | 
							
								    newFactors = NonlinearFactorGraph;
							 | 
						||
| 
								 | 
							
								    newValues = Values;
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    if rem(measurementIndex,100)==0 % plot every 100 time steps
							 | 
						||
| 
								 | 
							
								      cla;
							 | 
						||
| 
								 | 
							
								      plot3DTrajectory(isam.calculateEstimate, 'g-');
							 | 
						||
| 
								 | 
							
								      title('Estimated trajectory using ISAM2 (IMU+VO)')
							 | 
						||
| 
								 | 
							
								      xlabel('[m]')
							 | 
						||
| 
								 | 
							
								      ylabel('[m]')
							 | 
						||
| 
								 | 
							
								      zlabel('[m]')
							 | 
						||
| 
								 | 
							
								      axis equal
							 | 
						||
| 
								 | 
							
								      drawnow;
							 | 
						||
| 
								 | 
							
								    end
							 | 
						||
| 
								 | 
							
								    % ======================================================================= 
							 | 
						||
| 
								 | 
							
								    currentPoseGlobal = isam.calculateEstimate(currentPoseKey);
							 | 
						||
| 
								 | 
							
								    currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
							 | 
						||
| 
								 | 
							
								    currentBias = isam.calculateEstimate(currentBiasKey);   
							 | 
						||
| 
								 | 
							
								  end
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								end % end main loop
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								disp('-- Reached end of sensor data')
							 |