588 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
		
		
			
		
	
	
			588 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
|  | 
 | ||
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  *  @file   EquivInertialNavFactor_GlobalVel_NoBias.h | ||
|  |  *  @author Vadim Indelman, Stephen Williams | ||
|  |  *  @brief  Equivalent inertial navigation factor (velocity in the global frame), without bias state. | ||
|  |  *  @date   May 9, 2013 | ||
|  |  **/ | ||
|  | 
 | ||
|  | #pragma once
 | ||
|  | 
 | ||
|  | #include <gtsam/nonlinear/NonlinearFactor.h>
 | ||
|  | #include <gtsam/linear/NoiseModel.h>
 | ||
|  | #include <gtsam/geometry/Rot3.h>
 | ||
|  | #include <gtsam/base/LieVector.h>
 | ||
|  | #include <gtsam/base/Matrix.h>
 | ||
|  | 
 | ||
|  | // Using numerical derivative to calculate d(Pose3::Expmap)/dw
 | ||
|  | #include <gtsam/base/numericalDerivative.h>
 | ||
|  | 
 | ||
|  | #include <boost/optional.hpp>
 | ||
|  | 
 | ||
|  | #include <ostream>
 | ||
|  | 
 | ||
|  | namespace gtsam { | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * NOTES: | ||
|  |  * ===== | ||
|  |  * Concept: Based on [Lupton12tro] | ||
|  |  * - Pre-integrate IMU measurements using the static function PreIntegrateIMUObservations. | ||
|  |  * 	 Pre-integrated quantities are expressed in the body system of t0 - the first time instant (in which pre-integration began). | ||
|  |  * 	 All sensor-to-body transformations are performed here. | ||
|  |  * - If required, calculate inertial solution by calling the static functions: predictPose_inertial, predictVelocity_inertial. | ||
|  |  * - When the time is right, incorporate pre-integrated IMU data by creating an EquivInertialNavFactor_GlobalVel_NoBias factor, which will | ||
|  |  *   relate between navigation variables at the two time instances (t0 and current time). | ||
|  |  * | ||
|  |  * Other notes: | ||
|  |  * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame. | ||
|  |  * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames. | ||
|  |  * - Camera and IMU frames are identical | ||
|  |  * - The user should specify a continuous equivalent noise covariance, which can be calculated using | ||
|  |  *   the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance | ||
|  |  *   matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a | ||
|  |  *   discrete form using the supplied delta_t between sub-sequential measurements. | ||
|  |  * - Earth-rate correction: | ||
|  |  * 		+ Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global | ||
|  |  * 		  frame (Local-Level system: ENU or NED, see above). | ||
|  |  * 		+ R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system. | ||
|  |  *		+ Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant. | ||
|  |  *		  Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon. | ||
|  |  * | ||
|  |  * - Frame Notation: | ||
|  |  *   Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame} | ||
|  |  *   So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor | ||
|  |  *   And the transformation from the body frame to the world frame would be: world_P_body | ||
|  |  *   This allows visual chaining. For example, converting the sensed angular velocity of the IMU | ||
|  |  *   (angular velocity of the sensor in the sensor frame) into the world frame can be performed as: | ||
|  |  *       world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor | ||
|  |  * | ||
|  |  * | ||
|  |  * - Common Quantity Types | ||
|  |  *   P : pose/3d transformation | ||
|  |  *   R : rotation | ||
|  |  *   omega : angular velocity | ||
|  |  *   t : translation | ||
|  |  *   v : velocity | ||
|  |  *   a : acceleration | ||
|  |  * | ||
|  |  * - Common Frames | ||
|  |  *   sensor : the coordinate system attached to the sensor origin | ||
|  |  *   body   : the coordinate system attached to body/inertial frame. | ||
|  |  *            Unless an optional frame transformation is provided, the | ||
|  |  *            sensor frame and the body frame will be identical | ||
|  |  *   world  : the global/world coordinate frame. This is assumed to be | ||
|  |  *            a tangent plane to the earth's surface somewhere near the | ||
|  |  *            vehicle | ||
|  |  */ | ||
|  | 
 | ||
|  | template<class POSE, class VELOCITY> | ||
|  | class EquivInertialNavFactor_GlobalVel_NoBias : public NoiseModelFactor4<POSE, VELOCITY, POSE, VELOCITY> { | ||
|  | 
 | ||
|  | private: | ||
|  | 
 | ||
|  | 	typedef EquivInertialNavFactor_GlobalVel_NoBias<POSE, VELOCITY> This; | ||
|  | 	typedef NoiseModelFactor4<POSE, VELOCITY, POSE, VELOCITY> Base; | ||
|  | 
 | ||
|  | 	Vector delta_pos_in_t0_; | ||
|  | 	Vector delta_vel_in_t0_; | ||
|  | 	Vector3 delta_angles_; | ||
|  | 	double dt12_; | ||
|  | 
 | ||
|  | 	Vector world_g_; | ||
|  | 	Vector world_rho_; | ||
|  | 	Vector world_omega_earth_; | ||
|  | 
 | ||
|  | 	Matrix Jacobian_wrt_t0_Overall_; | ||
|  | 
 | ||
|  | 	boost::optional<POSE> body_P_sensor_;   // The pose of the sensor in the body frame
 | ||
|  | 
 | ||
|  | public: | ||
|  | 
 | ||
|  | 	// shorthand for a smart pointer to a factor
 | ||
|  | 	typedef typename boost::shared_ptr<EquivInertialNavFactor_GlobalVel_NoBias> shared_ptr; | ||
|  | 
 | ||
|  | 	/** default constructor - only use for serialization */ | ||
|  | 	EquivInertialNavFactor_GlobalVel_NoBias() {} | ||
|  | 
 | ||
|  | 	/** Constructor */ | ||
|  | 	EquivInertialNavFactor_GlobalVel_NoBias(const Key& Pose1, const Key& Vel1, const Key& Pose2, const Key& Vel2, | ||
|  | 			const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles, | ||
|  | 			double dt12, const Vector world_g, const Vector world_rho, | ||
|  | 			const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_equivalent, | ||
|  | 			const Matrix& Jacobian_wrt_t0_Overall, | ||
|  | 			boost::optional<POSE> body_P_sensor = boost::none) : | ||
|  | 				Base(model_equivalent, Pose1, Vel1, Pose2, Vel2), | ||
|  | 				delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles), | ||
|  | 				dt12_(dt12), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), Jacobian_wrt_t0_Overall_(Jacobian_wrt_t0_Overall), | ||
|  | 				body_P_sensor_(body_P_sensor) {	} | ||
|  | 
 | ||
|  | 	virtual ~EquivInertialNavFactor_GlobalVel_NoBias() {} | ||
|  | 
 | ||
|  | 	/** implement functions needed for Testable */ | ||
|  | 
 | ||
|  | 	/** print */ | ||
|  | 	virtual void print(const std::string& s = "EquivInertialNavFactor_GlobalVel_NoBias", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { | ||
|  | 		std::cout << s << "(" | ||
|  | 				<< keyFormatter(this->key1()) << "," | ||
|  | 				<< keyFormatter(this->key2()) << "," | ||
|  | 				<< keyFormatter(this->key3()) << "," | ||
|  | 				<< keyFormatter(this->key4()) << "\n"; | ||
|  | 		std::cout << "delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl; | ||
|  | 		std::cout << "delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl; | ||
|  | 		std::cout << "delta_angles: " << this->delta_angles_ << std::endl; | ||
|  | 		std::cout << "dt12: " << this->dt12_ << std::endl; | ||
|  | 		std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl; | ||
|  | 		std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl; | ||
|  | 		std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl; | ||
|  | 		if(this->body_P_sensor_) | ||
|  | 			this->body_P_sensor_->print("  sensor pose in body frame: "); | ||
|  | 		this->noiseModel_->print("  noise model"); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/** equals */ | ||
|  | 	virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const { | ||
|  | 		const This *e =	dynamic_cast<const This*> (&expected); | ||
|  | 		return e != NULL && Base::equals(*e, tol) | ||
|  | 		&& (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol | ||
|  | 		&& (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol | ||
|  | 		&& (delta_angles_ - e->delta_angles_).norm() < tol | ||
|  | 		&& (dt12_ - e->dt12_) < tol | ||
|  | 		&& (world_g_ - e->world_g_).norm() < tol | ||
|  | 		&& (world_rho_ - e->world_rho_).norm() < tol | ||
|  | 		&& (world_omega_earth_ - e->world_omega_earth_).norm() < tol | ||
|  | 		&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1) const { | ||
|  | 
 | ||
|  | 		/* Position term */ | ||
|  | 		Vector delta_pos_in_t0_corrected = delta_pos_in_t0_; | ||
|  | 
 | ||
|  | 		/* Rotation term */ | ||
|  | 		Vector delta_angles_corrected = delta_angles_; | ||
|  | 
 | ||
|  | 		return predictPose_inertial(Pose1, Vel1, | ||
|  | 				delta_pos_in_t0_corrected, delta_angles_corrected, | ||
|  | 					dt12_, world_g_, world_rho_, world_omega_earth_); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	static inline POSE predictPose_inertial(const POSE& Pose1, const VELOCITY& Vel1, | ||
|  | 			const Vector& delta_pos_in_t0, const Vector3& delta_angles, | ||
|  | 			const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth){ | ||
|  | 
 | ||
|  | 		const POSE& world_P1_body = Pose1; | ||
|  | 		const VELOCITY& world_V1_body = Vel1; | ||
|  | 
 | ||
|  | 		/* Position term */ | ||
|  | 		Vector body_deltaPos_body = delta_pos_in_t0; | ||
|  | 
 | ||
|  | 		Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body; | ||
|  | 		Vector world_deltaPos_body     = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body; | ||
|  | 
 | ||
|  | 		// Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | ||
|  | 		world_deltaPos_body -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12; | ||
|  | 
 | ||
|  | 		/* TODO: the term dt12*dt12 in 0.5*world_g*dt12*dt12 is not entirely correct:
 | ||
|  | 		 *  the gravity should be canceled from the accelerometer measurements, bust since position | ||
|  | 		 *  is added with a delta velocity from a previous term, the actual delta time is more complicated. | ||
|  | 		 *  Need to figure out this in the future - currently because of this issue we'll get some more error | ||
|  | 		 *  in Z axis. | ||
|  | 		 */ | ||
|  | 
 | ||
|  | 		/* Rotation term */ | ||
|  | 		Vector body_deltaAngles_body = delta_angles; | ||
|  | 
 | ||
|  | 		// Convert earth-related terms into the body frame
 | ||
|  | 		Matrix body_R_world(world_P1_body.rotation().inverse().matrix()); | ||
|  | 		Vector body_rho = body_R_world * world_rho; | ||
|  | 		Vector body_omega_earth = body_R_world * world_omega_earth; | ||
|  | 
 | ||
|  | 		// Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | ||
|  | 		body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12; | ||
|  | 
 | ||
|  | 		return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() + typename POSE::Translation(world_deltaPos_body)); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1) const { | ||
|  | 
 | ||
|  | 
 | ||
|  | 		Vector delta_vel_in_t0_corrected = delta_vel_in_t0_; | ||
|  | 
 | ||
|  | 		return predictVelocity_inertial(Pose1, Vel1, | ||
|  | 				delta_vel_in_t0_corrected, | ||
|  | 					dt12_, world_g_, world_rho_, world_omega_earth_); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	static inline VELOCITY predictVelocity_inertial(const POSE& Pose1, const VELOCITY& Vel1, | ||
|  | 	    const Vector& delta_vel_in_t0, | ||
|  | 	    const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth) { | ||
|  | 
 | ||
|  | 	  const POSE& world_P1_body = Pose1; | ||
|  | 	  const VELOCITY& world_V1_body = Vel1; | ||
|  | 
 | ||
|  | 	  Vector body_deltaVel_body = delta_vel_in_t0; | ||
|  | 	  Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body; | ||
|  | 
 | ||
|  | 	  VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 ); | ||
|  | 
 | ||
|  | 	  // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | ||
|  | 	  VelDelta -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12; | ||
|  | 
 | ||
|  | 	  // Predict
 | ||
|  | 	  return Vel1.compose( VelDelta ); | ||
|  | 
 | ||
|  | 	} | ||
|  | 
 | ||
|  | 	void predict(const POSE& Pose1, const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2) const { | ||
|  | 		Pose2 = predictPose(Pose1, Vel1); | ||
|  | 		Vel2  = predictVelocity(Pose1, Vel1); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2) const { | ||
|  | 		// Predict
 | ||
|  | 		POSE Pose2Pred = predictPose(Pose1, Vel1); | ||
|  | 
 | ||
|  | 		// Calculate error
 | ||
|  | 		return Pose2.between(Pose2Pred); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2) const { | ||
|  | 		// Predict
 | ||
|  | 		VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1); | ||
|  | 
 | ||
|  | 		// Calculate error
 | ||
|  | 		return Vel2.between(Vel2Pred); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2, | ||
|  | 			boost::optional<Matrix&> H1 = boost::none, | ||
|  | 			boost::optional<Matrix&> H2 = boost::none, | ||
|  | 			boost::optional<Matrix&> H3 = boost::none, | ||
|  | 			boost::optional<Matrix&> H4 = boost::none) const { | ||
|  | 
 | ||
|  | 		// TODO: Write analytical derivative calculations
 | ||
|  | 		// Jacobian w.r.t. Pose1
 | ||
|  | 		if (H1){ | ||
|  | 		  Matrix H1_Pose = numericalDerivative11<POSE, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, _1, Vel1, Pose2, Vel2), Pose1); | ||
|  | 		  Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, _1, Vel1, Pose2, Vel2), Pose1); | ||
|  | 			*H1 = stack(2, &H1_Pose, &H1_Vel); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Jacobian w.r.t. Vel1
 | ||
|  | 		if (H2){ | ||
|  | 		  Matrix H2_Pose = numericalDerivative11<POSE, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, _1, Pose2, Vel2), Vel1); | ||
|  | 		  Matrix H2_Vel = numericalDerivative11<VELOCITY, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, _1, Pose2, Vel2), Vel1); | ||
|  | 			*H2 = stack(2, &H2_Pose, &H2_Vel); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Jacobian w.r.t. Pose2
 | ||
|  | 		if (H3){ | ||
|  | 		  Matrix H3_Pose = numericalDerivative11<POSE, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, Vel1, _1, Vel2), Pose2); | ||
|  | 			Matrix H3_Vel = numericalDerivative11<VELOCITY, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, Vel1, _1, Vel2), Pose2); | ||
|  | 			*H3 = stack(2, &H3_Pose, &H3_Vel); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Jacobian w.r.t. Vel2
 | ||
|  | 		if (H4){ | ||
|  | 		  Matrix H4_Pose = numericalDerivative11<POSE, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, Vel1, Pose2, _1), Vel2); | ||
|  | 		  Matrix H4_Vel = numericalDerivative11<VELOCITY, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, Vel1, Pose2, _1), Vel2); | ||
|  | 			*H4 = stack(2, &H4_Pose, &H4_Vel); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Pose2, Vel2))); | ||
|  | 		Vector ErrVelVector(VELOCITY::Logmap(evaluateVelocityError(Pose1, Vel1, Pose2, Vel2))); | ||
|  | 
 | ||
|  | 		return concatVectors(2, &ErrPoseVector, &ErrVelVector); | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   static inline POSE PredictPoseFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, | ||
|  |       const Vector& delta_pos_in_t0, const Vector3& delta_angles, | ||
|  |       double dt12, const Vector world_g, const Vector world_rho, | ||
|  |       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) { | ||
|  | 
 | ||
|  |     /* Position term */ | ||
|  |     Vector delta_pos_in_t0_corrected = delta_pos_in_t0; | ||
|  | 
 | ||
|  |     /* Rotation term */ | ||
|  |     Vector delta_angles_corrected = delta_angles; | ||
|  |     // Another alternative:
 | ||
|  |     //    Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
 | ||
|  | 
 | ||
|  |     return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth); | ||
|  |   } | ||
|  | 
 | ||
|  |   static inline VELOCITY PredictVelocityFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, | ||
|  |       const Vector& delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho, | ||
|  |       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) { | ||
|  | 
 | ||
|  |     Vector delta_vel_in_t0_corrected = delta_vel_in_t0; | ||
|  | 
 | ||
|  |     return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth); | ||
|  |   } | ||
|  | 
 | ||
|  |   static inline void PredictFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2, | ||
|  |       const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles, | ||
|  |       double dt12, const Vector world_g, const Vector world_rho, | ||
|  |       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) { | ||
|  | 
 | ||
|  |     Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall); | ||
|  |     Vel2  = PredictVelocityFromPreIntegration(Pose1, Vel1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall); | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   static inline void PreIntegrateIMUObservations(const Vector& msr_acc_t, const Vector& msr_gyro_t, const double msr_dt, | ||
|  |       Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0, double& delta_t, | ||
|  | 			const noiseModel::Gaussian::shared_ptr& model_continuous_overall, | ||
|  | 			Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall, | ||
|  | 			boost::optional<POSE> p_body_P_sensor = boost::none){ | ||
|  | 		// Note: all delta terms refer to an IMU\sensor system at t0
 | ||
|  | 		// Note: Earth-related terms are not accounted here but are incorporated in predict functions.
 | ||
|  | 
 | ||
|  | 		POSE body_P_sensor = POSE(); | ||
|  | 		bool flag_use_body_P_sensor = false; | ||
|  | 		if (p_body_P_sensor){ | ||
|  | 			body_P_sensor = *p_body_P_sensor; | ||
|  | 			flag_use_body_P_sensor = true; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0); | ||
|  | 		delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor); | ||
|  | 		delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor); | ||
|  | 
 | ||
|  | 		delta_t += msr_dt; | ||
|  | 
 | ||
|  | 		// Update EquivCov_Overall
 | ||
|  | 		Matrix Z_3x3 = zeros(3,3); | ||
|  | 		Matrix I_3x3 = eye(3,3); | ||
|  | 
 | ||
|  | 		Matrix H_pos_pos = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, _1, delta_vel_in_t0), delta_pos_in_t0); | ||
|  | 		Matrix H_pos_vel = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, delta_pos_in_t0, _1), delta_vel_in_t0); | ||
|  | 		Matrix H_pos_angles = Z_3x3; | ||
|  | 
 | ||
|  | 		Matrix H_vel_vel = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, _1, flag_use_body_P_sensor, body_P_sensor), delta_vel_in_t0); | ||
|  | 		Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, _1, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor), delta_angles); | ||
|  | 		Matrix H_vel_pos = Z_3x3; | ||
|  | 
 | ||
|  | 		Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, _1, flag_use_body_P_sensor, body_P_sensor), delta_angles); | ||
|  | 		Matrix H_angles_pos = Z_3x3; | ||
|  | 		Matrix H_angles_vel = Z_3x3; | ||
|  | 
 | ||
|  | 		Matrix F_angles = collect(3, &H_angles_angles, &H_angles_pos, &H_angles_vel); | ||
|  | 		Matrix F_pos    = collect(3, &H_pos_angles, &H_pos_pos, &H_pos_vel); | ||
|  | 		Matrix F_vel    = collect(3, &H_vel_angles, &H_vel_pos, &H_vel_vel); | ||
|  | 		Matrix F = stack(3, &F_angles, &F_pos, &F_vel); | ||
|  | 
 | ||
|  | 		noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt ); | ||
|  | 		Matrix Q_d = inverse(model_discrete_curr->R().transpose() * model_discrete_curr->R() ); | ||
|  | 
 | ||
|  | 		EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d; | ||
|  | 
 | ||
|  | 		// Update Jacobian_wrt_t0_Overall
 | ||
|  | 		Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	static inline Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt, | ||
|  | 			const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0){ | ||
|  | 
 | ||
|  | 		// Note: all delta terms refer to an IMU\sensor system at t0
 | ||
|  | 		// Note: delta_vel_in_t0 is already in body frame, so no need to use the body_P_sensor transformation here.
 | ||
|  | 
 | ||
|  | 		return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt, | ||
|  | 			const Vector3& delta_angles, const Vector& delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE& body_P_sensor){ | ||
|  | 
 | ||
|  | 		// Note: all delta terms refer to an IMU\sensor system at t0
 | ||
|  | 
 | ||
|  | 		// Calculate the corrected measurements using the Bias object
 | ||
|  | 	  Vector AccCorrected  = msr_acc_t; | ||
|  | 	  Vector body_t_a_body; | ||
|  | 		if (flag_use_body_P_sensor){ | ||
|  | 		  Matrix body_R_sensor = body_P_sensor.rotation().matrix(); | ||
|  | 
 | ||
|  | 		  Vector GyroCorrected(msr_gyro_t); | ||
|  | 
 | ||
|  | 		  Vector body_omega_body = body_R_sensor * GyroCorrected; | ||
|  | 		  Matrix body_omega_body__cross = skewSymmetric(body_omega_body); | ||
|  | 
 | ||
|  | 			body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector(); | ||
|  | 		} else{ | ||
|  | 			body_t_a_body = AccCorrected; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles); | ||
|  | 
 | ||
|  | 		return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt, | ||
|  | 			const Vector3& delta_angles, const bool flag_use_body_P_sensor, const POSE& body_P_sensor){ | ||
|  | 
 | ||
|  | 		// Note: all delta terms refer to an IMU\sensor system at t0
 | ||
|  | 
 | ||
|  | 		// Calculate the corrected measurements using the Bias object
 | ||
|  | 	  Vector GyroCorrected = msr_gyro_t; | ||
|  | 
 | ||
|  | 	  Vector body_t_omega_body; | ||
|  | 		if (flag_use_body_P_sensor){ | ||
|  | 			body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected; | ||
|  | 		} else { | ||
|  | 			body_t_omega_body = GyroCorrected; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles); | ||
|  | 
 | ||
|  | 		R_t_to_t0    = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt ); | ||
|  | 		return Rot3::Logmap(R_t_to_t0); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro, | ||
|  | 	    const noiseModel::Gaussian::shared_ptr& gaussian_process){ | ||
|  | 
 | ||
|  | 	  Matrix cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() ); | ||
|  | 	  Matrix cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() ); | ||
|  | 	  Matrix cov_process = inverse( gaussian_process->R().transpose() * gaussian_process->R() ); | ||
|  | 
 | ||
|  | 	  cov_process.block(0,0, 3,3) += cov_gyro; | ||
|  | 	  cov_process.block(6,6, 3,3) += cov_acc; | ||
|  | 
 | ||
|  | 	  return noiseModel::Gaussian::Covariance(cov_process); | ||
|  | 	} | ||
|  | 
 | ||
|  |   static inline void CalcEquivalentNoiseCov_DifferentParts(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro, | ||
|  |       const noiseModel::Gaussian::shared_ptr& gaussian_process, | ||
|  |       Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){ | ||
|  | 
 | ||
|  |     cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() ); | ||
|  |     cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() ); | ||
|  |     cov_process_without_acc_gyro = inverse( gaussian_process->R().transpose() * gaussian_process->R() ); | ||
|  |   } | ||
|  | 
 | ||
|  | 	static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial, | ||
|  | 	    Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) { | ||
|  | 
 | ||
|  | 	  Matrix ENU_to_NED = Matrix_(3, 3, | ||
|  | 				0.0,  1.0,  0.0, | ||
|  | 				1.0,  0.0,  0.0, | ||
|  | 				0.0,  0.0, -1.0); | ||
|  | 
 | ||
|  | 	  Matrix NED_to_ENU = Matrix_(3, 3, | ||
|  | 				0.0,  1.0,  0.0, | ||
|  | 				1.0,  0.0,  0.0, | ||
|  | 				0.0,  0.0, -1.0); | ||
|  | 
 | ||
|  | 		// Convert incoming parameters to ENU
 | ||
|  | 	  Vector Pos_ENU = NED_to_ENU * Pos_NED; | ||
|  | 	  Vector Vel_ENU = NED_to_ENU * Vel_NED; | ||
|  | 	  Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial; | ||
|  | 
 | ||
|  | 		// Call ENU version
 | ||
|  | 	  Vector g_ENU; | ||
|  | 	  Vector rho_ENU; | ||
|  | 	  Vector omega_earth_ENU; | ||
|  | 		Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU); | ||
|  | 
 | ||
|  | 		// Convert output to NED
 | ||
|  | 		g_NED = ENU_to_NED * g_ENU; | ||
|  | 		rho_NED = ENU_to_NED * rho_ENU; | ||
|  | 		omega_earth_NED = ENU_to_NED * omega_earth_ENU; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial, | ||
|  | 	    Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){ | ||
|  | 		double R0 = 6.378388e6; | ||
|  | 		double e = 1/297; | ||
|  | 		double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) ); | ||
|  | 
 | ||
|  | 		// Calculate current lat, lon
 | ||
|  | 		Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial); | ||
|  | 		double delta_lat(delta_Pos_ENU(1)/Re); | ||
|  | 		double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0)))); | ||
|  | 		double lat_new(LatLonHeight_IC(0) + delta_lat); | ||
|  | 		double lon_new(LatLonHeight_IC(1) + delta_lon); | ||
|  | 
 | ||
|  | 		// Rotation of lon about z axis
 | ||
|  | 		Rot3 C1(cos(lon_new), sin(lon_new), 0.0, | ||
|  | 				-sin(lon_new), cos(lon_new), 0.0, | ||
|  | 				0.0, 0.0, 1.0); | ||
|  | 
 | ||
|  | 		// Rotation of lat about y axis
 | ||
|  | 		Rot3 C2(cos(lat_new), 0.0, sin(lat_new), | ||
|  | 				0.0, 1.0, 0.0, | ||
|  | 				-sin(lat_new), 0.0, cos(lat_new)); | ||
|  | 
 | ||
|  | 		Rot3 UEN_to_ENU(0, 1, 0, | ||
|  | 				0, 0, 1, | ||
|  | 				1, 0, 0); | ||
|  | 
 | ||
|  | 		Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 ); | ||
|  | 
 | ||
|  | 		Vector omega_earth_ECEF(Vector_(3, 0.0, 0.0, 7.292115e-5)); | ||
|  | 		omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF; | ||
|  | 
 | ||
|  | 		// Calculating g
 | ||
|  | 		double height(LatLonHeight_IC(2)); | ||
|  | 		double EQUA_RADIUS = 6378137.0;    		// equatorial radius of the earth; WGS-84
 | ||
|  | 		double ECCENTRICITY = 0.0818191908426;  // eccentricity of the earth ellipsoid
 | ||
|  | 		double e2( pow(ECCENTRICITY,2) ); | ||
|  | 		double den( 1-e2*pow(sin(lat_new),2) ); | ||
|  | 		double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) ); | ||
|  | 		double Rp( EQUA_RADIUS/( sqrt(den) ) ); | ||
|  | 		double Ro( sqrt(Rp*Rm) );   				// mean earth radius of curvature
 | ||
|  | 		double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) ); | ||
|  | 		double g_calc( g0/( pow(1 + height/Ro, 2) ) ); | ||
|  | 		g_ENU = Vector_(3, 0.0, 0.0, -g_calc); | ||
|  | 
 | ||
|  | 
 | ||
|  | 		// Calculate rho
 | ||
|  | 		double Ve( Vel_ENU(0) ); | ||
|  | 		double Vn( Vel_ENU(1) ); | ||
|  | 		double rho_E = -Vn/(Rm + height); | ||
|  | 		double rho_N = Ve/(Rp + height); | ||
|  | 		double rho_U = Ve*tan(lat_new)/(Rp + height); | ||
|  | 		rho_ENU = Vector_(3, rho_E, rho_N, rho_U); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){ | ||
|  | 			/* Q_d (approx)= Q * delta_t */ | ||
|  | 			/* In practice, square root of the information matrix is represented, so that:
 | ||
|  | 			 *  R_d (approx)= R / sqrt(delta_t) | ||
|  | 			 * */ | ||
|  | 			return noiseModel::Gaussian::SqrtInformation(model->R()/sqrt(delta_t)); | ||
|  | 		} | ||
|  | private: | ||
|  | 
 | ||
|  | 	/** Serialization function */ | ||
|  | 	friend class boost::serialization::access; | ||
|  | 	template<class ARCHIVE> | ||
|  | 	void serialize(ARCHIVE & ar, const unsigned int version) { | ||
|  | 		ar & boost::serialization::make_nvp("NonlinearFactor2", | ||
|  | 				boost::serialization::base_object<Base>(*this)); | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | }; // \class EquivInertialNavFactor_GlobalVel_NoBias
 | ||
|  | 
 | ||
|  | } /// namespace gtsam
 |