| 
									
										
										
										
											2020-07-13 05:34:16 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010-2020, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * @file  DiscreteBayesNetExample.cpp | 
					
						
							|  |  |  |  * @brief   Hidden Markov Model example, discrete. | 
					
						
							|  |  |  |  * @author  Frank Dellaert | 
					
						
							|  |  |  |  * @date  July 12, 2020 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
					
						
							|  |  |  | #include <gtsam/discrete/DiscreteMarginals.h>
 | 
					
						
							| 
									
										
										
										
											2020-07-14 20:50:20 +08:00
										 |  |  | #include <gtsam/inference/BayesNet.h>
 | 
					
						
							| 
									
										
										
										
											2020-07-13 05:34:16 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | #include <iomanip>
 | 
					
						
							|  |  |  | #include <sstream>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int main(int argc, char **argv) { | 
					
						
							|  |  |  |   const int nrNodes = 4; | 
					
						
							|  |  |  |   const size_t nrStates = 3; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Define variables as well as ordering
 | 
					
						
							|  |  |  |   Ordering ordering; | 
					
						
							|  |  |  |   vector<DiscreteKey> keys; | 
					
						
							|  |  |  |   for (int k = 0; k < nrNodes; k++) { | 
					
						
							|  |  |  |     DiscreteKey key_i(k, nrStates); | 
					
						
							|  |  |  |     keys.push_back(key_i); | 
					
						
							|  |  |  |     ordering.emplace_back(k); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create HMM as a DiscreteBayesNet
 | 
					
						
							|  |  |  |   DiscreteBayesNet hmm; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Define backbone
 | 
					
						
							|  |  |  |   const string transition = "8/1/1 1/8/1 1/1/8"; | 
					
						
							|  |  |  |   for (int k = 1; k < nrNodes; k++) { | 
					
						
							|  |  |  |     hmm.add(keys[k] | keys[k - 1] = transition); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Add some measurements, not needed for all time steps!
 | 
					
						
							|  |  |  |   hmm.add(keys[0] % "7/2/1"); | 
					
						
							|  |  |  |   hmm.add(keys[1] % "1/9/0"); | 
					
						
							|  |  |  |   hmm.add(keys.back() % "5/4/1"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // print
 | 
					
						
							|  |  |  |   hmm.print("HMM"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Convert to factor graph
 | 
					
						
							|  |  |  |   DiscreteFactorGraph factorGraph(hmm); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create solver and eliminate
 | 
					
						
							|  |  |  |   // This will create a DAG ordered with arrow of time reversed
 | 
					
						
							|  |  |  |   DiscreteBayesNet::shared_ptr chordal = | 
					
						
							|  |  |  |       factorGraph.eliminateSequential(ordering); | 
					
						
							|  |  |  |   chordal->print("Eliminated"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // solve
 | 
					
						
							|  |  |  |   DiscreteFactor::sharedValues mpe = chordal->optimize(); | 
					
						
							|  |  |  |   GTSAM_PRINT(*mpe); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // We can also sample from it
 | 
					
						
							|  |  |  |   cout << "\n10 samples:" << endl; | 
					
						
							|  |  |  |   for (size_t k = 0; k < 10; k++) { | 
					
						
							|  |  |  |     DiscreteFactor::sharedValues sample = chordal->sample(); | 
					
						
							|  |  |  |     GTSAM_PRINT(*sample); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Or compute the marginals. This re-eliminates the FG into a Bayes tree
 | 
					
						
							|  |  |  |   cout << "\nComputing Node Marginals .." << endl; | 
					
						
							|  |  |  |   DiscreteMarginals marginals(factorGraph); | 
					
						
							|  |  |  |   for (int k = 0; k < nrNodes; k++) { | 
					
						
							|  |  |  |     Vector margProbs = marginals.marginalProbabilities(keys[k]); | 
					
						
							|  |  |  |     stringstream ss; | 
					
						
							|  |  |  |     ss << "marginal " << k; | 
					
						
							|  |  |  |     print(margProbs, ss.str()); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // TODO(frank): put in the glue to have DiscreteMarginals produce *arbitrary*
 | 
					
						
							|  |  |  |   // joints efficiently, by the Bayes tree shortcut magic. All the code is there
 | 
					
						
							|  |  |  |   // but it's not yet connected.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return 0; | 
					
						
							|  |  |  | } |