5747 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			Plaintext
		
	
	
		
		
			
		
	
	
			5747 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			Plaintext
		
	
	
|  | #LyX 2.0 created this file. For more info see http://www.lyx.org/ | ||
|  | \lyxformat 413 | ||
|  | \begin_document | ||
|  | \begin_header | ||
|  | \textclass article | ||
|  | \use_default_options false | ||
|  | \begin_modules | ||
|  | eqs-within-sections | ||
|  | figs-within-sections | ||
|  | theorems-ams-bytype | ||
|  | \end_modules | ||
|  | \maintain_unincluded_children false | ||
|  | \language english | ||
|  | \language_package default | ||
|  | \inputencoding auto | ||
|  | \fontencoding global | ||
|  | \font_roman times | ||
|  | \font_sans default | ||
|  | \font_typewriter default | ||
|  | \font_default_family rmdefault | ||
|  | \use_non_tex_fonts false | ||
|  | \font_sc false | ||
|  | \font_osf false | ||
|  | \font_sf_scale 100 | ||
|  | \font_tt_scale 100 | ||
|  | 
 | ||
|  | \graphics default | ||
|  | \default_output_format default | ||
|  | \output_sync 0 | ||
|  | \bibtex_command default | ||
|  | \index_command default | ||
|  | \paperfontsize 12 | ||
|  | \spacing single | ||
|  | \use_hyperref false | ||
|  | \papersize default | ||
|  | \use_geometry true | ||
|  | \use_amsmath 1 | ||
|  | \use_esint 0 | ||
|  | \use_mhchem 1 | ||
|  | \use_mathdots 1 | ||
|  | \cite_engine basic | ||
|  | \use_bibtopic false | ||
|  | \use_indices false | ||
|  | \paperorientation portrait | ||
|  | \suppress_date false | ||
|  | \use_refstyle 0 | ||
|  | \index Index | ||
|  | \shortcut idx | ||
|  | \color #008000 | ||
|  | \end_index | ||
|  | \leftmargin 1in | ||
|  | \topmargin 1in | ||
|  | \rightmargin 1in | ||
|  | \bottommargin 1in | ||
|  | \secnumdepth 3 | ||
|  | \tocdepth 3 | ||
|  | \paragraph_separation indent | ||
|  | \paragraph_indentation default | ||
|  | \quotes_language english | ||
|  | \papercolumns 1 | ||
|  | \papersides 1 | ||
|  | \paperpagestyle default | ||
|  | \tracking_changes false | ||
|  | \output_changes false | ||
|  | \html_math_output 0 | ||
|  | \html_css_as_file 0 | ||
|  | \html_be_strict false | ||
|  | \end_header | ||
|  | 
 | ||
|  | \begin_body | ||
|  | 
 | ||
|  | \begin_layout Title | ||
|  | Derivatives and Differentials | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Author | ||
|  | Frank Dellaert | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Box Frameless | ||
|  | position "t" | ||
|  | hor_pos "c" | ||
|  | has_inner_box 1 | ||
|  | inner_pos "t" | ||
|  | use_parbox 0 | ||
|  | use_makebox 0 | ||
|  | width "100col%" | ||
|  | special "none" | ||
|  | height "1in" | ||
|  | height_special "totalheight" | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\SqrMah}[3]{\Vert{#1}-{#2}\Vert_{#3}^{2}} | ||
|  | {\Vert{#1}-{#2}\Vert_{#3}^{2}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\SqrZMah}[2]{\Vert{#1}\Vert_{#2}^{2}} | ||
|  | {\Vert{#1}\Vert_{#2}^{2}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Rone}{\mathbb{R}} | ||
|  | {\mathbb{R}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Reals}[1]{\mathbb{R}^{#1}} | ||
|  | {\mathbb{R}^{#1}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\OneD}[1]{\Reals{#1}\rightarrow\Rone} | ||
|  | {\Reals{#1}\rightarrow\Rone} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Multi}[2]{\Reals{#1}\rightarrow\Reals{#2}} | ||
|  | {\Reals{#1}\rightarrow\Reals{#2}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Man}{\mathcal{M}} | ||
|  | {\mathcal{M}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset Note Comment | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | Derivatives | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}} | ||
|  | {\frac{\partial#1}{\partial#2}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\at}[2]{#1\biggr\rvert_{#2}} | ||
|  | {#1\biggr\rvert_{#2}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  |   | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} } | ||
|  | {\at{\deriv{#1}{#2}}{#3}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset Note Comment | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | Lie Groups | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\xhat}{\hat{x}} | ||
|  | {\hat{x}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\yhat}{\hat{y}} | ||
|  | {\hat{y}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Ad}[1]{Ad_{#1}} | ||
|  | {Ad_{#1}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\define}{\stackrel{\Delta}{=}} | ||
|  | {\stackrel{\Delta}{=}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\gg}{\mathfrak{g}} | ||
|  | {\mathfrak{g}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Rn}{\mathbb{R}^{n}} | ||
|  | {\mathbb{R}^{n}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset Note Comment | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | SO(2) | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Rtwo}{\mathbb{R}^{2}} | ||
|  | {\mathbb{R}^{2}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\SOtwo}{SO(2)} | ||
|  | {SO(2)} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\sotwo}{\mathfrak{so(2)}} | ||
|  | {\mathfrak{so(2)}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\that}{\hat{\theta}} | ||
|  | {\hat{\theta}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\skew}[1]{[#1]_{+}} | ||
|  | {[#1]_{+}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset Note Comment | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | SE(2) | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\SEtwo}{SE(2)} | ||
|  | {SE(2)} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\setwo}{\mathfrak{se(2)}} | ||
|  | {\mathfrak{se(2)}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset Note Comment | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | SO(3) | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Rthree}{\mathbb{R}^{3}} | ||
|  | {\mathbb{R}^{3}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\SOthree}{SO(3)} | ||
|  | {SO(3)} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\sothree}{\mathfrak{so(3)}} | ||
|  | {\mathfrak{so(3)}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\what}{\hat{\omega}} | ||
|  | {\hat{\omega}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Skew}[1]{[#1]_{\times}} | ||
|  | {[#1]_{\times}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset Note Comment | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | SE(3) | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\Rsix}{\mathbb{R}^{6}} | ||
|  | {\mathbb{R}^{6}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\SEthree}{SE(3)} | ||
|  | {SE(3)} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\sethree}{\mathfrak{se(3)}} | ||
|  | {\mathfrak{se(3)}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\xihat}{\hat{\xi}} | ||
|  | {\hat{\xi}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Part | ||
|  | Theory | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Optimization | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | We will be concerned with minimizing a non-linear least squares objective | ||
|  |  of the form  | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | x^{*}=\arg\min_{x}\SqrMah{h(x)}z{\Sigma}\label{eq:objective} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $x\in\Man$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is a point on an  | ||
|  | \begin_inset Formula $n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | -dimensional manifold (which could be  | ||
|  | \begin_inset Formula $\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , an n-dimensional Lie group  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , or a general manifold  | ||
|  | \begin_inset Formula $\Man)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ,  | ||
|  | \begin_inset Formula $z\in\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is an observed measurement,  | ||
|  | \begin_inset Formula $h:\Man\rightarrow\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is a measurement function that predicts  | ||
|  | \begin_inset Formula $z$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  from  | ||
|  | \begin_inset Formula $x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and  | ||
|  | \begin_inset Formula $\SqrZMah e{\Sigma}\define e^{T}\Sigma^{-1}e$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the squared Mahalanobis distance with covariance  | ||
|  | \begin_inset Formula $\Sigma$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |   | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | To minimize  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:objective" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we need a notion of how the non-linear measurement function  | ||
|  | \begin_inset Formula $h(x)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  behaves in the neighborhood of a linearization point  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Loosely speaking, we would like to define an  | ||
|  | \begin_inset Formula $m\times n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  Jacobian matrix  | ||
|  | \begin_inset Formula $H_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  such that | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | h(a\oplus\xi)\approx h(a)+H_{a}\xi\label{eq:LocalBehavior} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with  | ||
|  | \begin_inset Formula $\xi\in\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and the operation  | ||
|  | \begin_inset Formula $\oplus$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |   | ||
|  | \begin_inset Quotes eld | ||
|  | \end_inset | ||
|  | 
 | ||
|  | increments | ||
|  | \begin_inset Quotes erd | ||
|  | \end_inset | ||
|  | 
 | ||
|  |   | ||
|  | \begin_inset Formula $a\in\Man$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Below we more formally develop this notion, first for functions from  | ||
|  | \begin_inset Formula $\Multi nm$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then for Lie groups, and finally for manifolds. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Once equipped with the approximation  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:LocalBehavior" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we can minimize the objective function  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:objective" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with respect to  | ||
|  | \begin_inset Formula $\delta x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  instead: | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \xi^{*}=\arg\min_{\xi}\SqrMah{h(a)+H_{a}\xi}z{\Sigma}\label{eq:ApproximateObjective} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | This can be done by setting the derivative of  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:ApproximateObjective" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to zero, | ||
|  | \begin_inset Note Note | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  |   | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{1}{2}H_{a}^{T}(h(a)+H_{a}\xi-z)=0 | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  yielding the  | ||
|  | \series bold | ||
|  | normal equations | ||
|  | \series default | ||
|  | , | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | H_{a}^{T}H_{a}\xi=H_{a}^{T}\left(z-h(a)\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | which can be solved using Cholesky factorization. | ||
|  |  Of course, we might have to iterate this multiple times, and use a trust-region | ||
|  |  method to bound  | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  when the approximation  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:LocalBehavior" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is not good. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Multivariate Differentiation | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Derivatives | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | For a vector space  | ||
|  | \begin_inset Formula $\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , the notion of an increment is just done by vector addition | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | a\oplus\xi\define a+\xi | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and for the approximation  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "eq:LocalBehavior" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we will use a Taylor expansion using multivariate differentiation. | ||
|  |  However, loosely following  | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | key "Spivak65book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we use a perhaps unfamiliar way to define derivatives: | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Definition | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "def:differentiable" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | We define a function  | ||
|  | \begin_inset Formula $f:\Multi nm$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to be  | ||
|  | \series bold | ||
|  | differentiable | ||
|  | \series default | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  if there exists a matrix  | ||
|  | \begin_inset Formula $f'(a)\in\Reals{m\times n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  such that  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \lim_{\delta x\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f(a+\xi)\right|}{\left|\xi\right|}=0 | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $\left|e\right|\define\sqrt{e^{T}e}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the usual norm. | ||
|  |  If  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is differentiable, then the matrix  | ||
|  | \begin_inset Formula $f'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is called the  | ||
|  | \series bold | ||
|  | Jacobian matrix | ||
|  | \series default | ||
|  |  of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and the linear map  | ||
|  | \begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is called the  | ||
|  | \series bold | ||
|  | derivative | ||
|  | \series default | ||
|  |  of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  When no confusion is likely, we use the notation  | ||
|  | \begin_inset Formula $F_{a}\define f'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to stress that  | ||
|  | \begin_inset Formula $f'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is a matrix. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The benefit of using this definition is that it generalizes the notion of | ||
|  |  a scalar derivative  | ||
|  | \begin_inset Formula $f'(a):\Rone\rightarrow\Rone$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to multivariate functions from  | ||
|  | \begin_inset Formula $\Multi nm$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  In particular, the derivative  | ||
|  | \begin_inset Formula $Df_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  maps vector increments  | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  on  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to increments  | ||
|  | \begin_inset Formula $f'(a)\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  on  | ||
|  | \begin_inset Formula $f(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , such that this linear map locally approximates  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f(a+\xi)\approx f(a)+f'(a)\xi | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "ex:projection" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The function  | ||
|  | \begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  projects a 3D point  | ||
|  | \begin_inset Formula $(x,y,z)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to the image plane, and has the Jacobian matrix | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \pi'(x,y,z)=\frac{1}{z}\left[\begin{array}{ccc} | ||
|  | 1 & 0 & -x/z\\ | ||
|  | 0 & 1 & -y/z | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Properties of Derivatives | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | This notion of a multivariate derivative obeys the usual rules: | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | (Chain rule) If  | ||
|  | \begin_inset Formula $f:\Multi np$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is differentiable at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $g:\Multi pm$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is differentiable at  | ||
|  | \begin_inset Formula $f(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , | ||
|  | \begin_inset Note Note | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | 
 | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \strikeout off | ||
|  | \uuline off | ||
|  | \uwave off | ||
|  | \noun off | ||
|  | \color none | ||
|  |  then  | ||
|  | \begin_inset Formula $D(g\circ f)_{a}=Dg_{f(a)}\circ Df_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  then the Jacobian matrix  | ||
|  | \begin_inset Formula $H_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  of  | ||
|  | \begin_inset Formula $h=g\circ f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the  | ||
|  | \begin_inset Formula $m\times n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  matrix product  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | H_{a}=G_{f(a)}F_{a} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | See  | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | key "Spivak65book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "ex:chain-rule" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | If we follow the projection  | ||
|  | \begin_inset Formula $\pi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  by a calibration step  | ||
|  | \begin_inset Formula $\gamma:(x,y)\mapsto(u_{0}+fx,u_{0}+fy)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , with  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \gamma'(x,y)=\left[\begin{array}{cc} | ||
|  | f & 0\\ | ||
|  | 0 & f | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | then the combined function  | ||
|  | \begin_inset Formula $\gamma\circ\pi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  has the Jacobian matrix | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | (\gamma\circ\pi)'(x,y)=\frac{f}{z}\left[\begin{array}{ccc} | ||
|  | 1 & 0 & -x/z\\ | ||
|  | 0 & 1 & -y/z | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | (Inverse) If  | ||
|  | \begin_inset Formula $f:\Multi nn$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is differentiable and has a differentiable inverse  | ||
|  | \begin_inset Formula $g\define f^{-1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then its Jacobian matrix  | ||
|  | \begin_inset Formula $G_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is just the inverse of that of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , evaluated at  | ||
|  | \begin_inset Formula $g(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | G_{a}=\left[F_{g(a)}\right]^{-1} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | See  | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | key "Spivak65book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "ex:inverse" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The function  | ||
|  | \begin_inset Formula $f:(x,y)\mapsto(x^{2},xy)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  has the Jacobian matrix | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | F_{(x,y)}=\left[\begin{array}{cc} | ||
|  | 2x & 0\\ | ||
|  | y & x | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and, for  | ||
|  | \begin_inset Formula $x\geq0$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , its inverse is the function  | ||
|  | \begin_inset Formula $g:(x,y)\mapsto(x^{1/2},x^{-1/2}y)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with the Jacobian matrix | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | G_{(x,y)}=\frac{1}{2}\left[\begin{array}{cc} | ||
|  | x^{-1/2} & 0\\ | ||
|  | -x^{-3/2}y & 2x^{-1/2} | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | It is easily verified that | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | g'(a,b)f'(a^{1/2},a^{-1/2}b)=\frac{1}{2}\left[\begin{array}{cc} | ||
|  | a^{-1/2} & 0\\ | ||
|  | -a^{-3/2}b & 2a^{-1/2} | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | 2a^{1/2} & 0\\ | ||
|  | a^{-1/2}b & a^{1/2} | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | 1 & 0\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Problem | ||
|  | Verify the above for  | ||
|  | \begin_inset Formula $(a,b)=(4,6)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Sketch the situation graphically to get insight. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Computing Multivariate Derivatives | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Computing derivatives is made easy by defining the concept of a partial | ||
|  |  derivative: | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Definition | ||
|  | For  | ||
|  | \begin_inset Formula $f:\OneD n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , the  | ||
|  | \series bold | ||
|  | partial derivative | ||
|  | \series default | ||
|  |  of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , | ||
|  | \series bold | ||
|  |   | ||
|  | \series default | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | D_{j}f(a)\define\lim_{h\rightarrow0}\frac{f\left(a^{1},\ldots,a^{j}+h,\ldots,a^{n}\right)-f\left(a^{1},\ldots,a^{n}\right)}{h} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | which is the ordinary derivative of the scalar function  | ||
|  | \begin_inset Formula $g(x)\define f\left(a^{1},\ldots,x,\ldots,a^{n}\right)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |   | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Using this definition, one can show that the Jacobian matrix  | ||
|  | \begin_inset Formula $F_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  of a differentiable  | ||
|  | \emph on | ||
|  | multivariate | ||
|  | \emph default | ||
|  |  function  | ||
|  | \begin_inset Formula $f:\Multi nm$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  consists simply of the  | ||
|  | \begin_inset Formula $m\times n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  partial derivatives  | ||
|  | \begin_inset Formula $D_{j}f^{i}(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , evaluated at  | ||
|  | \begin_inset Formula $a\in\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | F_{a}=\left[\begin{array}{ccc} | ||
|  | D_{1}f^{1}(a) & \cdots & D_{n}f^{1}(a)\\ | ||
|  | \vdots & \ddots & \vdots\\ | ||
|  | D_{1}f^{m}(a) & \ldots & D_{n}f^{m}(a) | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Problem | ||
|  | Verify the derivatives in Examples  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "ex:projection" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "ex:inverse" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Newpage pagebreak | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Multivariate Functions on Lie Groups | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Lie Groups | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Lie groups are not as easy to treat as the vector space  | ||
|  | \begin_inset Formula $\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  but nevertheless have a lot of structure. | ||
|  |  To generalize the concept of the total derivative above we just need to | ||
|  |  replace  | ||
|  | \begin_inset Formula $a\oplus\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  in  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:ApproximateObjective" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with a suitable operation in the Lie group  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  In particular, the notion of an exponential map allows us to define an | ||
|  |  incremental transformation as tracing out a geodesic curve on the group | ||
|  |  manifold along a certain  | ||
|  | \series bold | ||
|  | tangent vector | ||
|  | \series default | ||
|  |   | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ,  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | a\oplus\xi\define a\exp\left(\hat{\xi}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with  | ||
|  | \begin_inset Formula $\xi\in\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for an  | ||
|  | \begin_inset Formula $n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | -dimensional Lie group,  | ||
|  | \begin_inset Formula $\hat{\xi}\in\mathfrak{g}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the Lie algebra element corresponding to the vector  | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and  | ||
|  | \begin_inset Formula $\exp\hat{\xi}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the exponential map. | ||
|  |  Note that if  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is equal to  | ||
|  | \begin_inset Formula $\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  then composing with the exponential map  | ||
|  | \begin_inset Formula $ae^{\xihat}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is just vector addition  | ||
|  | \begin_inset Formula $a+\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | For the Lie group  | ||
|  | \begin_inset Formula $\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  of 3D rotations the vector  | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is denoted as  | ||
|  | \begin_inset Formula $\omega$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and represents an angular displacement. | ||
|  |  The Lie algebra element  | ||
|  | \begin_inset Formula $\xihat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is a skew symmetric matrix denoted as  | ||
|  | \begin_inset Formula $\Skew{\omega}\in\sothree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Skew{\omega}=\left[\begin{array}{ccc} | ||
|  | 0 & -\omega_{z} & \omega_{y}\\ | ||
|  | \omega_{z} & 0 & -\omega_{x}\\ | ||
|  | -\omega_{y} & \omega_{x} & 0 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Finally, the increment  | ||
|  | \begin_inset Formula $a\oplus\xi=ae^{\xihat}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  corresponds to an incremental rotation  | ||
|  | \begin_inset Formula $R\oplus\omega=Re^{\Skew{\omega}}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Derivatives | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | We can generalize Definition  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "def:differentiable" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to map exponential coordinates  | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to increments  | ||
|  | \begin_inset Formula $f'(a)\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  on  | ||
|  | \begin_inset Formula $f(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , such that the linear map  | ||
|  | \begin_inset Formula $Df_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  locally approximates a function  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  from  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to  | ||
|  | \begin_inset Formula $\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f(ae^{\xihat})\approx f(a)+f'(a)\xi | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Definition | ||
|  | We define a function  | ||
|  | \begin_inset Formula $f:G\rightarrow\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to be  | ||
|  | \series bold | ||
|  | differentiable | ||
|  | \series default | ||
|  |  at  | ||
|  | \begin_inset Formula $a\in G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  if there exists a matrix  | ||
|  | \begin_inset Formula $f'(a)\in\Reals{m\times n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  such that | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \lim_{\xi\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f(ae^{\hat{\xi}})\right|}{\left|\xi\right|}=0 | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | If  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is differentiable, then the matrix  | ||
|  | \begin_inset Formula $f'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is called the  | ||
|  | \series bold | ||
|  | Jacobian matrix | ||
|  | \series default | ||
|  |  of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and the linear map  | ||
|  | \begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is called the  | ||
|  | \series bold | ||
|  | derivative | ||
|  | \series default | ||
|  |  of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Note that the vectors  | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  can be viewed as lying in the tangent space to  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , but defining this rigorously would take us on a longer tour of differential | ||
|  |  geometry. | ||
|  |  Informally,  | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is simply the direction, in a local coordinate frame, that is locally tangent | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to a geodesic curve  | ||
|  | \begin_inset Formula $\gamma:t\mapsto ae^{\widehat{t\xi}}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  traced out by the exponential map, with  | ||
|  | \begin_inset Formula $\gamma(0)=a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Derivative of an Action | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "sec:Derivatives-of-Actions" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The (usual) action of an  | ||
|  | \begin_inset Formula $n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | -dimensional matrix group  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is matrix-vector multiplication on  | ||
|  | \begin_inset Formula $\mathbb{R}^{n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , i.e.,  | ||
|  | \begin_inset Formula $f:G\times\Reals n\rightarrow\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f(T,p)=Tp | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Since this is a function defined on the product  | ||
|  | \begin_inset Formula $G\times\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the derivative is a linear transformation  | ||
|  | \begin_inset Formula $Df:\Multi{2n}n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | Df_{(T,p)}\left(\xi,\delta p\right)=D_{1}f_{(T,p)}\left(\xi\right)+D_{2}f_{(T,p)}\left(\delta p\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "th:Action" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The Jacobian matrix of the group action | ||
|  | \begin_inset Formula $f(T,P)=Tp$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $(T,p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | F_{(T,p)}=\left[\begin{array}{cc} | ||
|  | TH(p) & T\end{array}\right]=T\left[\begin{array}{cc} | ||
|  | H(p) & I_{n}\end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with  | ||
|  | \begin_inset Formula $H:\Reals n\rightarrow\Reals{n\times n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  a linear mapping that depends on  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and  | ||
|  | \begin_inset Formula $I_{n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the  | ||
|  | \begin_inset Formula $n\times n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  identity matrix. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | First, the derivative  | ||
|  | \begin_inset Formula $D_{2}f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with respect to in  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is easy, as its matrix is simply T: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f(T,p+\delta p)=T(p+\delta p)=Tp+T\delta p=f(T,p)+D_{2}f(\delta p) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | For the derivative  | ||
|  | \begin_inset Formula $D_{1}f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with respect to a change in the first argument  | ||
|  | \begin_inset Formula $T$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we want | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | 
 | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \strikeout off | ||
|  | \uuline off | ||
|  | \uwave off | ||
|  | \noun off | ||
|  | \color none | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f(Te^{\hat{\xi}},p)=Te^{\hat{\xi}}p\approx Tp+D_{1}f(\xi) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \family default | ||
|  | \series default | ||
|  | \shape default | ||
|  | \size default | ||
|  | \emph default | ||
|  | \bar default | ||
|  | \strikeout default | ||
|  | \uuline default | ||
|  | \uwave default | ||
|  | \noun default | ||
|  | \color inherit | ||
|  | Since the matrix exponential is given by the series  | ||
|  | \begin_inset Formula $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have, to first order | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | Te^{\hat{\xi}}p\approx T(I+\hat{\xi})p=Tp+T\hat{\xi}p | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Note Note | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | Note also that | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | T\hat{\xi}p=\left(T\hat{\xi}T^{-1}\right)Tp=\left(\Ad T\xihat\right)\left(Tp\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Hence, we need to show that  | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \xihat p=H(p)\xi\label{eq:Hp} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with  | ||
|  | \begin_inset Formula $H(p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  an  | ||
|  | \begin_inset Formula $n\times n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  matrix that depends on  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Expressing the map  | ||
|  | \begin_inset Formula $\xi\rightarrow\hat{\xi}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  in terms of the Lie algebra generators  | ||
|  | \begin_inset Formula $G^{i}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , using tensors and Einstein summation, we have  | ||
|  | \begin_inset Formula $\hat{\xi}_{j}^{i}=G_{jk}^{i}\xi^{k}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  allowing us to calculate  | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \noun off | ||
|  | \color none | ||
|  | 
 | ||
|  | \begin_inset Formula $\hat{\xi}p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \family default | ||
|  | \series default | ||
|  | \shape default | ||
|  | \size default | ||
|  | \emph default | ||
|  | \bar default | ||
|  | \noun default | ||
|  | \color inherit | ||
|  |  as | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \left(\hat{\xi}p\right)^{i}=\hat{\xi}_{j}^{i}p^{j}=G_{jk}^{i}\xi^{k}p^{j}=\left(G_{jk}^{i}p^{j}\right)\xi^{k}=H_{k}^{i}(p)\xi^{k} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | For 3D rotations  | ||
|  | \begin_inset Formula $R\in\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we have  | ||
|  | \begin_inset Formula $\hat{\omega}=\Skew{\omega}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | G_{k=1}:\left(\begin{array}{ccc} | ||
|  | 0 & 0 & 0\\ | ||
|  | 0 & 0 & -1\\ | ||
|  | 0 & 1 & 0 | ||
|  | \end{array}\right)\mbox{}G_{k=2}:\left(\begin{array}{ccc} | ||
|  | 0 & 0 & 1\\ | ||
|  | 0 & 0 & 0\\ | ||
|  | -1 & 0 & 0 | ||
|  | \end{array}\right)\mbox{ }G_{k=3}:\left(\begin{array}{ccc} | ||
|  | 0 & -1 & 0\\ | ||
|  | 1 & 0 & 0\\ | ||
|  | 0 & 0 & 0 | ||
|  | \end{array}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \noun off | ||
|  | \color none | ||
|  | The matrices  | ||
|  | \begin_inset Formula $\left(G_{k}^{i}\right)_{j}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  are obtained by assembling the  | ||
|  | \begin_inset Formula $j^{th}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  columns of the generators above, yielding  | ||
|  | \begin_inset Formula $H(p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  equal to: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \left(\begin{array}{ccc} | ||
|  | 0 & 0 & 0\\ | ||
|  | 0 & 0 & 1\\ | ||
|  | 0 & -1 & 0 | ||
|  | \end{array}\right)p^{1}+\left(\begin{array}{ccc} | ||
|  | 0 & 0 & -1\\ | ||
|  | 0 & 0 & 0\\ | ||
|  | 1 & 0 & 0 | ||
|  | \end{array}\right)p^{2}+\left(\begin{array}{ccc} | ||
|  | 0 & 1 & 0\\ | ||
|  | -1 & 0 & 0\\ | ||
|  | 0 & 0 & 0 | ||
|  | \end{array}\right)p^{3}=\left(\begin{array}{ccc} | ||
|  | 0 & p^{3} & -p^{2}\\ | ||
|  | -p^{3} & 0 & p^{1}\\ | ||
|  | p^{2} & -p^{1} & 0 | ||
|  | \end{array}\right)=\Skew{-p} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \family default | ||
|  | \series default | ||
|  | \shape default | ||
|  | \size default | ||
|  | \emph default | ||
|  | \bar default | ||
|  | \noun default | ||
|  | \color inherit | ||
|  | Hence, the Jacobian matrix of  | ||
|  | \begin_inset Formula $f(R,p)=Rp$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | F_{(R,p)}=R\left(\begin{array}{cc} | ||
|  | \Skew{-p} & I_{3}\end{array}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Derivative of an Inverse Action | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Applying the action by the inverse of  | ||
|  | \begin_inset Formula $T\in G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  yields a function  | ||
|  | \begin_inset Formula $g:G\times\Reals n\rightarrow\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  defined by  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | g(T,p)=T^{-1}p | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "Th:InverseAction" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The Jacobian matrix of the inverse group action  | ||
|  | \begin_inset Formula $g(T,p)=T^{-1}p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | G_{(T,p)}=\left[\begin{array}{cc} | ||
|  | -H(T^{-1}p) & T^{-1}\end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $H:\Reals n\rightarrow\Reals{n\times n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the same mapping as before. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | Again, the derivative  | ||
|  | \begin_inset Formula $D_{2}g$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with respect to in  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is easy, the matrix of which is simply  | ||
|  | \begin_inset Formula $T^{-1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | g(T,p+\delta p)=T^{-1}(p+\delta p)=T^{-1}p+T^{-1}\delta p=g(T,p)+D_{2}g(\delta p) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Conversely, a change in  | ||
|  | \begin_inset Formula $T$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  yields | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | g(Te^{\xihat},p)=\left(Te^{\xihat}\right)^{-1}p=e^{-\xihat}T^{-1}p | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Similar to before, if we expand the matrix exponential we get | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | e^{-A}=I-A+\frac{A^{2}}{2!}-\frac{A^{3}}{3!}+\ldots | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | so | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | e^{-\xihat}T^{-1}p\approx(I-\xihat)T^{-1}p=g(T,p)-\xihat\left(T^{-1}p\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | For 3D rotations  | ||
|  | \begin_inset Formula $R\in\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have  | ||
|  | \begin_inset Formula $R^{-1}=R^{T}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ,  | ||
|  | \begin_inset Formula $H(p)=-\Skew p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and hence the Jacobian matrix of  | ||
|  | \begin_inset Formula $g(R,p)=R^{T}p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | G_{(R,p)}=\left(\begin{array}{cc} | ||
|  | \Skew{R^{T}p} & R^{T}\end{array}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Note Note | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | My earlier attempt: because the wedge operator is linear, we have | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | f(\xi+x) & = & \exp\widehat{\left(\xi+x\right)}\\ | ||
|  |  & = & \exp\left(\xihat+\hat{x}\right) | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | However, except for commutative Lie groups, it is not true that  | ||
|  | \begin_inset Formula $\exp\left(\xihat+\hat{x}\right)=\exp\xihat\exp\hat{x}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  However, if we expand the matrix exponential to second order and assume | ||
|  |   | ||
|  | \begin_inset Formula $x\rightarrow0$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we do have | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \exp\left(\xihat+\hat{x}\right)\approx I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Now, if we ask what  | ||
|  | \begin_inset Formula $\hat{y}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  would effect the same change: | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | \exp\xihat\exp\yhat & = & I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat\\ | ||
|  | \exp\xihat(I+\yhat) & = & I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat\\ | ||
|  | \left(\exp\xihat\right)\yhat & = & \xhat+\xhat\xihat | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Instantaneous Velocity | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | For matrix Lie groups, if we have a matrix  | ||
|  | \begin_inset Formula $T_{b}^{n}(t)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  that depends on a parameter  | ||
|  | \begin_inset Formula $t$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , i.e.,  | ||
|  | \begin_inset Formula $T_{b}^{n}(t)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  follows a curve on the manifold, then it would be of interest to find the | ||
|  |  velocity of a point  | ||
|  | \begin_inset Formula $q^{n}(t)=T_{b}^{n}(t)p^{b}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  acted upon by  | ||
|  | \begin_inset Formula $T_{b}^{n}(t)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  We can express the velocity of  | ||
|  | \begin_inset Formula $q(t)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  in both the n-frame and b-frame:  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \dot{q}^{n}=\dot{T}_{b}^{n}p^{b}=\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}p^{n}\mbox{\,\,\,\,\ and\,\,\,\,}\dot{q}^{b}=\left(T_{b}^{n}\right)^{-1}\dot{q}^{n}=\left(T_{b}^{n}\right)^{-1}\dot{T}_{b}^{n}p^{b} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Both the matrices  | ||
|  | \begin_inset Formula $\xihat_{nb}^{n}\define\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $\xihat_{nb}^{b}\define\left(T_{b}^{n}\right)^{-1}\dot{T}_{b}^{n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  are skew-symmetric Lie algebra elements that describe the  | ||
|  | \series bold | ||
|  | instantaneous velocity  | ||
|  | \series default | ||
|  | 
 | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | after "page 51 for rotations, page 419 for SE(3)" | ||
|  | key "Murray94book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  We will revisit this for both rotations and rigid 3D transformations. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Differentials: Smooth Mapping between Lie Groups | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Motivation and Definition | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The above shows how to compute the derivative of a function  | ||
|  | \begin_inset Formula $f:G\rightarrow\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  However, what if the argument to  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is itself the result of a mapping between Lie groups? In other words,  | ||
|  | \begin_inset Formula $f=g\circ\varphi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , with  | ||
|  | \begin_inset Formula $g:G\rightarrow\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and where  | ||
|  | \begin_inset Formula $\varphi:H\rightarrow G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is a smooth mapping from the  | ||
|  | \begin_inset Formula $n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | -dimensional Lie group  | ||
|  | \begin_inset Formula $H$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to the  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | -dimensional Lie group  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  In this case, one would expect that we can arrive at  | ||
|  | \begin_inset Formula $Df_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  by composing linear maps, as follows: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f'(a)=(g\circ\varphi)'(a)=G_{\varphi(a)}\varphi'(a) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $\varphi'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is an  | ||
|  | \begin_inset Formula $n\times p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  matrix that is the best linear approximation to the map  | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \strikeout off | ||
|  | \uuline off | ||
|  | \uwave off | ||
|  | \noun off | ||
|  | \color none | ||
|  | 
 | ||
|  | \begin_inset Formula $\varphi:H\rightarrow G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  The corresponding linear map  | ||
|  | \begin_inset Formula $D\varphi_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is called the  | ||
|  | \family default | ||
|  | \series bold | ||
|  | \shape default | ||
|  | \size default | ||
|  | \emph default | ||
|  | \bar default | ||
|  | \strikeout default | ||
|  | \uuline default | ||
|  | \uwave default | ||
|  | \noun default | ||
|  | \color inherit | ||
|  | differential | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \strikeout off | ||
|  | \uuline off | ||
|  | \uwave off | ||
|  | \noun off | ||
|  | \color none | ||
|  |   | ||
|  | \family default | ||
|  | \series default | ||
|  | \shape default | ||
|  | \size default | ||
|  | \emph default | ||
|  | \bar default | ||
|  | \strikeout default | ||
|  | \uuline default | ||
|  | \uwave default | ||
|  | \noun default | ||
|  | \color inherit | ||
|  | or  | ||
|  | \series bold | ||
|  | pushforward | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \strikeout off | ||
|  | \uuline off | ||
|  | \uwave off | ||
|  | \noun off | ||
|  | \color none | ||
|  |  of  | ||
|  | \begin_inset Formula $ $ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | the mapping  | ||
|  | \begin_inset Formula $\varphi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |   | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | 
 | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \strikeout off | ||
|  | \uuline off | ||
|  | \uwave off | ||
|  | \noun off | ||
|  | \color none | ||
|  | Because a rigorous definition will lead us too far astray, here we only | ||
|  |  informally define the pushforward of  | ||
|  | \begin_inset Formula $\varphi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as the linear map  | ||
|  | \begin_inset Formula $D\varphi_{a}:\Multi np$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  such that  | ||
|  | \begin_inset Formula $D\varphi_{a}\left(\xi\right)\define\varphi'(a)\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and | ||
|  | \family default | ||
|  | \series default | ||
|  | \shape default | ||
|  | \size default | ||
|  | \emph default | ||
|  | \bar default | ||
|  | \strikeout default | ||
|  | \uuline default | ||
|  | \uwave default | ||
|  | \noun default | ||
|  | \color inherit | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \varphi\left(ae^{\xihat}\right)\approx\varphi\left(a\right)\exp\left(\widehat{\varphi'(a)\xi}\right)\label{eq:pushforward} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with equality for  | ||
|  | \begin_inset Formula $\xi\rightarrow0$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  We call  | ||
|  | \begin_inset Formula $\varphi'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the  | ||
|  | \series bold | ||
|  | Jacobian matrix | ||
|  | \series default | ||
|  |  of the map  | ||
|  | \begin_inset Formula $\varphi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Below we show that even with this informal definition we can deduce the | ||
|  |  pushforward in a number of useful cases. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Left Multiplication with a Constant | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | Suppose  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is an  | ||
|  | \begin_inset Formula $n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | -dimensional Lie group, and  | ||
|  | \begin_inset Formula $\varphi:G\rightarrow G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is defined as  | ||
|  | \begin_inset Formula $\varphi(g)=hg$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , with  | ||
|  | \begin_inset Formula $h\in G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  a constant. | ||
|  |  Then  | ||
|  | \begin_inset Formula $D\varphi_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the identity mapping and  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \varphi'(a)=I_{n} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | Defining  | ||
|  | \begin_inset Formula $y=D\varphi_{a}x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as in  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:pushforward" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | \varphi(a)e^{\yhat} & = & \varphi(ae^{\xhat})\\ | ||
|  | hae^{\yhat} & = & hae^{\xhat}\\ | ||
|  | y & = & x | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Pushforward of the Inverse Mapping | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | A well known property of Lie groups is the the fact that applying an incremental | ||
|  |  change  | ||
|  | \begin_inset Formula $\xihat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  in a different frame  | ||
|  | \begin_inset Formula $g$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  can be applied in a single step by applying the change  | ||
|  | \begin_inset Formula $Ad_{g}\xihat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  in the original frame,  | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | ge^{\xihat}g^{-1}=\exp\left(Ad_{g}\xihat\right)\label{eq:Adjoint2} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $Ad_{g}:\mathfrak{g}\rightarrow\mathfrak{g}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the  | ||
|  | \series bold | ||
|  | adjoint representation | ||
|  | \series default | ||
|  | . | ||
|  |  This comes in handy in the following: | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | Suppose that  | ||
|  | \begin_inset Formula $\varphi:G\rightarrow G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is defined as the mapping from an element  | ||
|  | \begin_inset Formula $g$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to its  | ||
|  | \series bold | ||
|  | inverse | ||
|  | \series default | ||
|  |   | ||
|  | \begin_inset Formula $g^{-1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , i.e.,  | ||
|  | \begin_inset Formula $\varphi(g)=g^{-1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then the pushforward  | ||
|  | \begin_inset Formula $D\varphi_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  satisfies | ||
|  | \begin_inset Formula  | ||
|  | \begin{align} | ||
|  | \left(D\varphi_{a}x\right)\hat{} & =-Ad_{a}\xhat\label{eq:Dinverse} | ||
|  | \end{align} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset ERT | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | 
 | ||
|  | 
 | ||
|  | \backslash | ||
|  | noindent | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  In other words, and this is intuitive in hindsight, approximating the inverse | ||
|  |  is accomplished by negation of  | ||
|  | \begin_inset Formula $\xihat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , along with an adjoint to make sure it is applied in the right frame. | ||
|  |   | ||
|  | \begin_inset ERT | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | 
 | ||
|  | 
 | ||
|  | \backslash | ||
|  | noindent | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  Note, however, that  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:Dinverse" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  does not immediately yield a useful expression for the Jacobian matrix | ||
|  |   | ||
|  | \begin_inset Formula $\varphi'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , but in many important cases this will turn out to be easy. | ||
|  |   | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | Defining  | ||
|  | \begin_inset Formula $y=D\varphi_{a}x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as in  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:pushforward" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | \varphi(a)e^{\yhat} & = & \varphi(ae^{\xhat})\\ | ||
|  | a^{-1}e^{\yhat} & = & \left(ae^{\xhat}\right)^{-1}\\ | ||
|  | e^{\yhat} & = & -ae^{\xhat}a^{-1}\\ | ||
|  | \yhat & = & -\Ad a\xhat | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | For 3D rotations  | ||
|  | \begin_inset Formula $R\in\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | Ad_{g}(\hat{\omega})=R\hat{\omega}R^{T}=\Skew{R\omega} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and hence the pushforward for the inverse mapping  | ||
|  | \begin_inset Formula $\varphi(R)=R^{T}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  has the matrix  | ||
|  | \begin_inset Formula $\varphi'(R)=-R$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Right Multiplication with a Constant | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | Suppose  | ||
|  | \begin_inset Formula $\varphi:G\rightarrow G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is defined as  | ||
|  | \begin_inset Formula $\varphi(g)=gh$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , with  | ||
|  | \begin_inset Formula $h\in G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  a constant. | ||
|  |  Then  | ||
|  | \begin_inset Formula $D\varphi_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  satisfies | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \left(D\varphi_{a}x\right)\hat{}=\Ad{h^{-1}}\xhat | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | Defining  | ||
|  | \begin_inset Formula $y=D\varphi_{a}x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as in  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:pushforward" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{align*} | ||
|  | \varphi(a)e^{\yhat} & =\varphi(ae^{\xhat})\\ | ||
|  | ahe & =ae^{\xhat}h\\ | ||
|  | e^{\yhat} & =h^{-1}e^{\xhat}h=\exp\left(\Ad{h^{-1}}\xhat\right)\\ | ||
|  | \yhat & =\Ad{h^{-1}}\xhat | ||
|  | \end{align*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | In the case of 3D rotations, right multiplication with a constant rotation | ||
|  |   | ||
|  | \begin_inset Formula $R$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is done through the mapping  | ||
|  | \begin_inset Formula $\varphi(A)=AR$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and satisfies | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Skew{D\varphi_{A}x}=\Ad{R^{T}}\Skew x | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | For 3D rotations  | ||
|  | \begin_inset Formula $R\in\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | Ad_{R^{T}}(\hat{\omega})=R^{T}\hat{\omega}R=\Skew{R^{T}\omega} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and hence the Jacobian matrix of  | ||
|  | \begin_inset Formula $\varphi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $A$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is  | ||
|  | \begin_inset Formula $\varphi'(A)=R^{T}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Pushforward of Compose | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | If we define the mapping  | ||
|  | \begin_inset Formula $\varphi:G\times G\rightarrow G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as the product of two group elements  | ||
|  | \begin_inset Formula $g,h\in G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , i.e.,  | ||
|  | \begin_inset Formula $\varphi(g,h)=gh$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then the pushforward will satisfy | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | D\varphi_{(a,b)}(x,y)=D_{1}\varphi_{(a,b)}x+D_{2}\varphi_{(a,b)}y | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \left(D_{1}\varphi_{(a,b)}x\right)\hat{}=\Ad{b^{-1}}\xhat\mbox{\;\ and\;}D_{2}\varphi_{(a,b)}y=y | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | Looking at the first argument, the proof is very similar to right multiplication | ||
|  |  with a constant  | ||
|  | \begin_inset Formula $b$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Indeed, defining  | ||
|  | \begin_inset Formula $y=D\varphi_{a}x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as in  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:pushforward" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{align} | ||
|  | \varphi(a,b)e^{\yhat} & =\varphi(ae^{\xhat},b)\nonumber \\ | ||
|  | abe^{\yhat} & =ae^{\xhat}b\nonumber \\ | ||
|  | e^{\yhat} & =b^{-1}e^{\xhat}b=\exp\left(\Ad{b^{-1}}\xhat\right)\nonumber \\ | ||
|  | \yhat & =\Ad{b^{-1}}\xhat\label{eq:Dcompose1} | ||
|  | \end{align} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | In other words, to apply an incremental change  | ||
|  | \begin_inset Formula $\xhat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we first need to undo  | ||
|  | \begin_inset Formula $b$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then apply  | ||
|  | \begin_inset Formula $\xhat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and then apply  | ||
|  | \begin_inset Formula $b$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  again. | ||
|  |  Using  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:Adjoint2" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  this can be done in one step by simply applying  | ||
|  | \begin_inset Formula $\Ad{b^{-1}}\xhat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |   | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | The second argument is quite a bit easier and simply yields the identity | ||
|  |  mapping: | ||
|  | \begin_inset Formula  | ||
|  | \begin{align} | ||
|  | \varphi(a,b)e^{\yhat} & =\varphi(a,be^{\xhat})\nonumber \\ | ||
|  | abe^{\yhat} & =abe^{\xhat}\nonumber \\ | ||
|  | y & =x\label{eq:Dcompose2} | ||
|  | \end{align} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Note Note | ||
|  | status open | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | In summary, the Jacobian matrix of  | ||
|  | \begin_inset Formula $\varphi(g,h)=gh$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $(a,b)\in G\times G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \varphi'(a,b)=? | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | For 3D rotations  | ||
|  | \begin_inset Formula $A,B\in\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have  | ||
|  | \begin_inset Formula $\varphi(A,B)=AB$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and  | ||
|  | \begin_inset Formula $\Ad{B^{T}}\Skew{\omega}=\Skew{B^{T}\omega}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , hence the Jacobian matrix  | ||
|  | \begin_inset Formula $\varphi'(A,B)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  of composing two rotations is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \varphi'(A,B)=\left[\begin{array}{cc} | ||
|  | B^{T} & I_{3}\end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Pushforward of Between | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Finally, let us find the pushforward of  | ||
|  | \series bold | ||
|  | between | ||
|  | \series default | ||
|  | , defined as  | ||
|  | \begin_inset Formula $\varphi(g,h)=g^{-1}h$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  For the first argument we reason as: | ||
|  | \begin_inset Formula  | ||
|  | \begin{align} | ||
|  | \varphi(g,h)e^{\yhat} & =\varphi(ge^{\xhat},h)\nonumber \\ | ||
|  | g^{-1}he^{\yhat} & =\left(ge^{\xhat}\right)^{-1}h=-e^{\xhat}g^{-1}h\nonumber \\ | ||
|  | e^{\yhat} & =-\left(h^{-1}g\right)e^{\xhat}\left(h^{-1}g\right)^{-1}=-\exp\Ad{\left(h^{-1}g\right)}\xhat\nonumber \\ | ||
|  | \yhat & =-\Ad{\left(h^{-1}g\right)}\xhat=-\Ad{\varphi\left(h,g\right)}\xhat\label{eq:Dbetween1} | ||
|  | \end{align} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The second argument yields the identity mapping. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | For 3D rotations  | ||
|  | \begin_inset Formula $A,B\in\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have  | ||
|  | \begin_inset Formula $\varphi(A,B)=A^{T}B$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and  | ||
|  | \begin_inset Formula $\Ad{B^{T}A}\Skew{-\omega}=\Skew{-B^{T}A\omega}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , hence the Jacobian matrix  | ||
|  | \begin_inset Formula $\varphi'(A,B)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  of between is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \varphi'(A,B)=\left[\begin{array}{cc} | ||
|  | \left(-B^{T}A\right) & I_{3}\end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Numerical PushForward | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Let's examine | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f\left(g\right)e^{\yhat}=f\left(ge^{\xhat}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and multiply with  | ||
|  | \begin_inset Formula $f(g)^{-1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  on both sides: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | e^{\yhat}=f\left(g\right)^{-1}f\left(ge^{\xhat}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | We then take the log (which in our case returns  | ||
|  | \begin_inset Formula $y$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , not  | ||
|  | \begin_inset Formula $\yhat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ): | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | y(x)=\log\left[f\left(g\right)^{-1}f\left(ge^{\xhat}\right)\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Let us look at  | ||
|  | \begin_inset Formula $x=0$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and perturb in direction  | ||
|  | \begin_inset Formula $i$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ,  | ||
|  | \begin_inset Formula $e_{i}=[0,0,1,0,0]$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Then take derivative,  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{y(d)}d\define\lim_{d\rightarrow0}\frac{y(d)-y(0)}{d}=\lim_{d\rightarrow0}\frac{1}{d}\log\left[f\left(g\right)^{-1}f\left(ge^{\widehat{de_{i}}}\right)\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | which is the basis for a numerical derivative scheme. | ||
|  | \begin_inset Note Note | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | Not understood yet: Let us also look at a chain rule. | ||
|  |  If we know the behavior at the origin  | ||
|  | \begin_inset Formula $I$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we can extrapolate | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f(ge^{\xhat})=f(ge^{\xhat}g^{-1}g)=f(e^{\Ad g\xhat}g) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Derivative of the Exponential and Logarithm Map | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Theorem | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "D-exp" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The derivative of the function  | ||
|  | \begin_inset Formula $f:\Reals n\rightarrow G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  that applies the wedge operator followed by the exponential map, i.e.,  | ||
|  | \begin_inset Formula $f(\xi)=\exp\xihat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , is the identity map for  | ||
|  | \begin_inset Formula $\xi=0$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Proof | ||
|  | For  | ||
|  | \begin_inset Formula $\xi=0$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | f(\xi)e^{\yhat} & = & f(\xi+x)\\ | ||
|  | f(0)e^{\yhat} & = & f(0+x)\\ | ||
|  | e^{\yhat} & = & e^{\xhat} | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Corollary | ||
|  | The derivative of the inverse  | ||
|  | \begin_inset Formula $f^{-1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the identity as well, i.e., for  | ||
|  | \begin_inset Formula $T=e$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , the identity element in  | ||
|  | \begin_inset Formula $G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | For  | ||
|  | \begin_inset Formula $\xi\neq0$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , things are not simple, see . | ||
|  |   | ||
|  | \begin_inset Flex URL | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | 
 | ||
|  | http://deltaepsilons.wordpress.com/2009/11/06/helgasons-formula-for-the-differenti | ||
|  | al-of-the-exponential/ | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Newpage pagebreak | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | General Manifolds | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Retractions | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset FormulaMacro | ||
|  | \newcommand{\retract}{\mathcal{R}} | ||
|  | {\mathcal{R}} | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | General manifolds that are not Lie groups do not have an exponential map, | ||
|  |  but can still be handled by defining a  | ||
|  | \series bold | ||
|  | retraction | ||
|  | \series default | ||
|  |   | ||
|  | \begin_inset Formula $\retract:\Man\times\Reals n\rightarrow\Man$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , such that | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | a\oplus\xi\define\retract_{a}\left(\xi\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | A retraction  | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | key "Absil07book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is required to be tangent to geodesics on the manifold  | ||
|  | \begin_inset Formula $\Man$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  We can define many retractions for a manifold  | ||
|  | \begin_inset Formula $\Man$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , even for those with more structure. | ||
|  |  For the vector space  | ||
|  | \begin_inset Formula $\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the retraction is just vector addition, and for Lie groups the obvious | ||
|  |  retraction is simply the exponential map, i.e.,  | ||
|  | \begin_inset Formula $\retract_{a}(\xi)=a\cdot\exp\xihat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  However, one can choose other, possibly computationally attractive retractions, | ||
|  |  as long as around a they agree with the geodesic induced by the exponential | ||
|  |  map, i.e., | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \lim_{\xi\rightarrow0}\frac{\left|a\cdot\exp\xihat-\retract_{a}\left(\xi\right)\right|}{\left|\xi\right|}=0 | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | For  | ||
|  | \begin_inset Formula $\SEthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , instead of using the true exponential map it is computationally more efficient | ||
|  |  to define the retraction, which uses a first order approximation of the | ||
|  |  translation update | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \retract_{T}\left(\left[\begin{array}{c} | ||
|  | \omega\\ | ||
|  | v | ||
|  | \end{array}\right]\right)=\left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | e^{\Skew{\omega}} & v\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | Re^{\Skew{\omega}} & t+Rv\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Derivatives | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Equipped with a retraction, then, we can generalize the notion of a derivative | ||
|  |  for functions  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  from general a manifold  | ||
|  | \begin_inset Formula $\Man$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to  | ||
|  | \begin_inset Formula $\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Definition | ||
|  | We define a function  | ||
|  | \begin_inset Formula $f:\Man\rightarrow\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to be  | ||
|  | \series bold | ||
|  | differentiable | ||
|  | \series default | ||
|  |  at  | ||
|  | \begin_inset Formula $a\in\Man$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  if there exists a matrix  | ||
|  | \begin_inset Formula $f'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  such that | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \lim_{\xi\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f\left(\retract_{a}(\xi)\right)\right|}{\left|\xi\right|}=0 | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with  | ||
|  | \begin_inset Formula $\xi\in\Reals n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for an  | ||
|  | \begin_inset Formula $n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | -dimensional manifold, and  | ||
|  | \begin_inset Formula $\retract_{a}:\Reals n\rightarrow\Man$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  a retraction  | ||
|  | \begin_inset Formula $\retract$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  If  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is differentiable, then  | ||
|  | \begin_inset Formula $f'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is called the  | ||
|  | \series bold | ||
|  | Jacobian matrix | ||
|  | \series default | ||
|  |  of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and the linear transformation  | ||
|  | \begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is called the  | ||
|  | \series bold | ||
|  | derivative | ||
|  | \series default | ||
|  |  of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Definition | ||
|  | For manifolds that are also Lie groups, the derivative of any function  | ||
|  | \begin_inset Formula $f:G\rightarrow\Reals m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  will agree no matter what retraction  | ||
|  | \begin_inset Formula $\retract$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is used. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Newpage pagebreak | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Part | ||
|  | Practice | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Below we apply the results derived in the theory part to the geometric objects | ||
|  |  we use in GTSAM. | ||
|  |  Above we preferred the modern notation  | ||
|  | \begin_inset Formula $D_{1}f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for the partial derivative. | ||
|  |  Below (because this was written earlier) we use the more classical notation | ||
|  |   | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{f(x,y)}x | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | In addition, for Lie groups we will abuse the notation and take | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \at{\deriv{\varphi(g)}{\xi}}a | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | to be the Jacobian matrix  | ||
|  | \begin_inset Formula $\varphi'($ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | a) of the mapping  | ||
|  | \begin_inset Formula $\varphi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $a\in G$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , associated with the pushforward  | ||
|  | \begin_inset Formula $D\varphi_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | SLAM Example | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Let us examine a visual SLAM example. | ||
|  |  We have 2D measurements  | ||
|  | \begin_inset Formula $z_{ij}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , where each measurement is predicted by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | z_{ij}=h(T_{i},p_{j})=\pi(T_{i}^{-1}p_{j}) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $T_{i}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the 3D pose of the  | ||
|  | \begin_inset Formula $i^{th}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  camera,  | ||
|  | \begin_inset Formula $p_{j}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the location of the  | ||
|  | \begin_inset Formula $j^{th}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  point, and  | ||
|  | \begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the camera projection function from Example  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "ex:projection" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | BetweenFactor | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | BetweenFactor is often used to summarize  | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Theorem  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "D-exp" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  about the derivative of the exponential map  | ||
|  | \begin_inset Formula $f:\xi\mapsto\exp\xihat$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  being identity only at  | ||
|  | \begin_inset Formula $\xi=0$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  has implications for GTSAM. | ||
|  |  Given two elements  | ||
|  | \begin_inset Formula $T_{1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $T_{2}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , BetweenFactor evaluates | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | g(T_{1},T_{2};Z)=f^{-1}\left(\mathop{between}(Z,\mathop{between}(T_{1},T_{2})\right)=f^{-1}\left(Z^{-1}\left(T_{1}^{-1}T_{2}\right)\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | but because it is assumed that  | ||
|  | \begin_inset Formula $Z\approx T_{1}^{-1}T_{2}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and hence we have  | ||
|  | \begin_inset Formula $Z^{-1}T_{1}^{-1}T_{2}\approx e$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and the derivative should be good there. | ||
|  |  Note that the derivative of  | ||
|  | \emph on | ||
|  | between | ||
|  | \emph default | ||
|  |  is identity in its second argument. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Point3 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | A cross product  | ||
|  | \begin_inset Formula $a\times b$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  can be written as a matrix multiplication | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | a\times b=\Skew ab | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $\Skew a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is a skew-symmetric matrix defined as | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Skew{x,y,z}=\left[\begin{array}{ccc} | ||
|  | 0 & -z & y\\ | ||
|  | z & 0 & -x\\ | ||
|  | -y & x & 0 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | We also have | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | a^{T}\Skew b=-(\Skew ba)^{T}=-(a\times b)^{T} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The derivative of a cross product  | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \frac{\partial(a\times b)}{\partial a}=\Skew{-b}\label{eq:Dcross1} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \frac{\partial(a\times b)}{\partial b}=\Skew a\label{eq:Dcross2} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Newpage pagebreak | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | 2D Rotations | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Rot2 in GTSAM | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | A rotation is stored as  | ||
|  | \begin_inset Formula $(\cos\theta,\sin\theta)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  An incremental rotation is applied using the trigonometric sum rule: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \cos\theta'=\cos\theta\cos\delta-\sin\theta\sin\delta | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \sin\theta'=\sin\theta\cos\delta+\cos\theta\sin\delta | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $\delta$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is an incremental rotation angle. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Derivatives of Actions | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | In the case of  | ||
|  | \begin_inset Formula $\SOtwo$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the vector space is  | ||
|  | \begin_inset Formula $\Rtwo$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and the group action  | ||
|  | \begin_inset Formula $f(R,p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  corresponds to rotating the 2D point  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f(R,p)=Rp | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | According to Theorem  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "th:Action" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , the Jacobian matrix of  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f'(R,p)=\left[\begin{array}{cc} | ||
|  | RH(p) & R\end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with  | ||
|  | \begin_inset Formula $H:\Reals 2\rightarrow\Reals{2\times2}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  a linear mapping that depends on  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  In the case of  | ||
|  | \begin_inset Formula $\SOtwo$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we can find  | ||
|  | \begin_inset Formula $H(p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  by equating (as in Equation  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "eq:Hp" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ): | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \skew wp=\left[\begin{array}{cc} | ||
|  | 0 & -\omega\\ | ||
|  | \omega & 0 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | x\\ | ||
|  | y | ||
|  | \end{array}\right]=\left[\begin{array}{c} | ||
|  | -y\\ | ||
|  | x | ||
|  | \end{array}\right]\omega=H(p)\omega | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Note that  | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \strikeout off | ||
|  | \uuline off | ||
|  | \uwave off | ||
|  | \noun off | ||
|  | \color none | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | H(p)=\left[\begin{array}{c} | ||
|  | -y\\ | ||
|  | x | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | 0 & -1\\ | ||
|  | 1 & 0 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | x\\ | ||
|  | y | ||
|  | \end{array}\right]=R_{\pi/2}p | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and since 2D rotations commute, we also have, with  | ||
|  | \begin_inset Formula $q=Rp$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \family default | ||
|  | \series default | ||
|  | \shape default | ||
|  | \size default | ||
|  | \emph default | ||
|  | \bar default | ||
|  | \strikeout default | ||
|  | \uuline default | ||
|  | \uwave default | ||
|  | \noun default | ||
|  | \color inherit | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f'(R,p)=\left[\begin{array}{cc} | ||
|  | R\left(R_{\pi/2}p\right) & R\end{array}\right]=\left[\begin{array}{cc} | ||
|  | R_{\pi/2}q & R\end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Pushforwards of Mappings | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Since  | ||
|  | \begin_inset Formula $\Ad R\skew{\omega}=\skew{\omega}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we have the derivative of  | ||
|  | \series bold | ||
|  | inverse | ||
|  | \series default | ||
|  | , | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial R^{T}}{\partial\omega}=-\Ad R=-1\mbox{ } | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \series bold | ||
|  | compose, | ||
|  | \series default | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=\Ad{R_{2}^{T}}=1\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=1 | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and  | ||
|  | \series bold | ||
|  | between: | ||
|  | \series default | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{1}}=-\Ad{R_{2}^{T}R_{1}}=-1\mbox{ and }\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{2}}=1 | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Newpage pagebreak | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | 2D Rigid Transformations | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | The derivatives of Actions | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The action of  | ||
|  | \begin_inset Formula $\SEtwo$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  on 2D points is done by embedding the points in  | ||
|  | \begin_inset Formula $\mathbb{R}^{3}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  by using homogeneous coordinates | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | f(T,p)=\hat{q}=\left[\begin{array}{c} | ||
|  | q\\ | ||
|  | 1 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | p\\ | ||
|  | 1 | ||
|  | \end{array}\right]=T\hat{p} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | To find the derivative, we write the quantity  | ||
|  | \begin_inset Formula $\xihat\hat{p}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as the product of the  | ||
|  | \begin_inset Formula $3\times3$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  matrix  | ||
|  | \begin_inset Formula $H(p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with  | ||
|  | \begin_inset Formula $\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | :  | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \xihat\hat{p}=\left[\begin{array}{cc} | ||
|  | \skew{\omega} & v\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | p\\ | ||
|  | 1 | ||
|  | \end{array}\right]=\left[\begin{array}{c} | ||
|  | \skew{\omega}p+v\\ | ||
|  | 0 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | I_{2} & R_{\pi/2}p\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | v\\ | ||
|  | \omega | ||
|  | \end{array}\right]=H(p)\xi\label{eq:HpSE2} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Hence, by Theorem  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "th:Action" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \deriv{\left(T\hat{p}\right)}{\xi}=TH(p)=\left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | I_{2} & R_{\pi/2}p\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | R & RR_{\pi/2}p\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | R & R_{\pi/2}q\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]\label{eq:SE2Action} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Note that, looking only at the top rows of  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:HpSE2" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:SE2Action" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we can recognize the quantity  | ||
|  | \begin_inset Formula $\skew{\omega}p+v=v+\omega\left(R_{\pi/2}p\right)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as the velocity of  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  in  | ||
|  | \begin_inset Formula $\Rtwo$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and  | ||
|  | \begin_inset Formula $\left[\begin{array}{cc} | ||
|  | R & R_{\pi/2}q\end{array}\right]$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the derivative of the action on  | ||
|  | \begin_inset Formula $\Rtwo$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |   | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The derivative of the inverse action  | ||
|  | \begin_inset Formula $g(T,p)=T^{-1}\hat{p}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by Theorem  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "Th:InverseAction" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  specialized to  | ||
|  | \begin_inset Formula $\SEtwo$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-H(T^{-1}p)=\left[\begin{array}{cc} | ||
|  | -I_{2} & -R_{\pi/2}\left(T^{-1}p\right)\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Pushforwards of Mappings | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | We can just define all derivatives in terms of the adjoint map, which in | ||
|  |  the case of  | ||
|  | \begin_inset Formula $\SEtwo$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , in twist coordinates, is the linear mapping | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Ad T\xi=\left[\begin{array}{cc} | ||
|  | R & -R_{\pi/2}t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | v\\ | ||
|  | \omega | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and we have  | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | \frac{\partial T^{^{-1}}}{\partial\xi} & = & -\Ad T | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | \frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}} & = & \Ad{T_{2}^{^{-1}}}\mbox{ and }\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{3} | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | \frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{1}} & = & -\Ad{T_{2}^{^{-1}}T_{1}}=-\Ad{between(T_{2},T_{1})}\mbox{ and }\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{2}}=I_{3} | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Newpage pagebreak | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | 3D Rotations | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Derivatives of Actions | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | In the case of  | ||
|  | \begin_inset Formula $\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the vector space is   | ||
|  | \begin_inset Formula $\Rthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and the group action  | ||
|  | \begin_inset Formula $f(R,p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  corresponds to rotating a point | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | q=f(R,p)=Rp | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | To calculate  | ||
|  | \begin_inset Formula $H(p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for use in Theorem  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "th:Action" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we make use of  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | so  | ||
|  | \begin_inset Formula $H(p)\define\Skew{-p}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Hence, the final derivative of an action in its first argument is | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{\left(Rp\right)}{\omega}=RH(p)=-R\Skew p | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Likewise, according to Theorem  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "Th:InverseAction" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , the derivative of the inverse action is given by | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{\left(R^{T}p\right)}{\omega}=-H(R^{T}p)=\Skew{R^{T}p} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | \begin_inset CommandInset label | ||
|  | LatexCommand label | ||
|  | name "sub:3DAngularVelocities" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Instantaneous Velocity | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | For 3D rotations  | ||
|  | \begin_inset Formula $R_{b}^{n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  from a body frame  | ||
|  | \begin_inset Formula $b$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to a navigation frame  | ||
|  | \begin_inset Formula $n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have the spatial angular velocity  | ||
|  | \begin_inset Formula $\omega_{nb}^{n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  measured in the navigation frame, | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Skew{\omega_{nb}^{n}}\define\dot{R}_{b}^{n}\left(R_{b}^{n}\right)^{T}=\dot{R}_{b}^{n}R_{n}^{b} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and the body angular velocity  | ||
|  | \begin_inset Formula $\omega_{nb}^{b}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  measured in the body frame: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Skew{\omega_{nb}^{b}}\define\left(R_{b}^{n}\right)^{T}\dot{R}_{b}^{n}=R_{n}^{b}\dot{R}_{b}^{n} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | These quantities can be used to derive the velocity of a point  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and we choose between spatial or body angular velocity depending on the | ||
|  |  frame in which we choose to represent  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | v^{n}=\Skew{\omega_{nb}^{n}}p^{n}=\omega_{nb}^{n}\times p^{n} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | v^{b}=\Skew{\omega_{nb}^{b}}p^{b}=\omega_{nb}^{b}\times p^{b} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | We can transform these skew-symmetric matrices from navigation to body frame | ||
|  |  by conjugating,  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Skew{\omega_{nb}^{b}}=R_{n}^{b}\Skew{\omega_{nb}^{n}}R_{b}^{n} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | but because the adjoint representation satisfies | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | Ad_{R}\Skew{\omega}\define R\Skew{\omega}R^{T}=\Skew{R\omega} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | we can even more easily transform between spatial and body angular velocities | ||
|  |  as 3-vectors: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \omega_{nb}^{b}=R_{n}^{b}\omega_{nb}^{n} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Pushforwards of Mappings | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | For  | ||
|  | \begin_inset Formula $\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have  | ||
|  | \begin_inset Formula $\Ad R\Skew{\omega}=\Skew{R\omega}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and, in terms of angular velocities:  | ||
|  | \begin_inset Formula $\Ad R\omega=R\omega$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Hence, the Jacobian matrix of the  | ||
|  | \series bold | ||
|  | inverse | ||
|  | \series default | ||
|  |  mapping is (see Equation  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "eq:Dinverse" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | )  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial R^{T}}{\partial\omega}=-\Ad R=-R | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | for  | ||
|  | \series bold | ||
|  | compose | ||
|  | \series default | ||
|  |  we have (Equations  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "eq:Dcompose1" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "eq:Dcompose2" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ):  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=R_{2}^{T}\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and  | ||
|  | \series bold | ||
|  | between | ||
|  | \series default | ||
|  |  (Equation  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "eq:Dbetween1" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ): | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{1}}=-R_{2}^{T}R_{1}=-between(R_{2},R_{1})\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Retractions | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Absil  | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | after "page 58" | ||
|  | key "Absil07book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  discusses two possible retractions for  | ||
|  | \begin_inset Formula $\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  based on the QR decomposition or the polar decomposition of the matrix | ||
|  |   | ||
|  | \begin_inset Formula $R\Skew{\omega}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , but they are expensive. | ||
|  |  Another retraction is based on the Cayley transform  | ||
|  | \begin_inset Formula $\mathcal{C}:\sothree\rightarrow\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , a mapping from the skew-symmetric matrices to rotation matrices: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | Q=\mathcal{C}(\Omega)=(I-\Omega)(I+\Omega)^{-1} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Interestingly, the inverse Cayley transform  | ||
|  | \begin_inset Formula $\mathcal{C}^{-1}:\SOthree\rightarrow\sothree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  has the same form: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Omega=\mathcal{C}^{-1}(Q)=(I-Q)(I+Q)^{-1} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The retraction needs a factor  | ||
|  | \begin_inset Formula $-\frac{1}{2}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  however, to make it locally align with a geodesic:  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | R'=\retract_{R}(\omega)=R\mathcal{C}(-\frac{1}{2}\Skew{\omega}) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Note that given  | ||
|  | \begin_inset Formula $\omega=(x,y,z)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  this has the closed-form expression below | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{1}{4+x^{2}+y^{2}+z^{2}}\left[\begin{array}{ccc} | ||
|  | 4+x^{2}-y^{2}-z^{2} & 2xy-4z & 2xz+4y\\ | ||
|  | 2xy+4z & 4-x^{2}+y^{2}-z^{2} & 2yz-4x\\ | ||
|  | 2xz-4y & 2yz+4x & 4-x^{2}-y^{2}+z^{2} | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | =\frac{1}{4+x^{2}+y^{2}+z^{2}}\left\{ 4(I+\Skew{\omega})+\left[\begin{array}{ccc} | ||
|  | x^{2}-y^{2}-z^{2} & 2xy & 2xz\\ | ||
|  | 2xy & -x^{2}+y^{2}-z^{2} & 2yz\\ | ||
|  | 2xz & 2yz & -x^{2}-y^{2}+z^{2} | ||
|  | \end{array}\right]\right\}  | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | so it can be seen to be a second-order correction on  | ||
|  | \begin_inset Formula $(I+\Skew{\omega})$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  The corresponding approximation to the logarithmic map is: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Skew{\omega}=\retract_{R}^{-1}(R')=-2\mathcal{C}^{-1}\left(R^{T}R'\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | 3D Rigid Transformations | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | The derivatives of Actions | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The action of  | ||
|  | \begin_inset Formula $\SEthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  on 3D points is done by embedding the points in  | ||
|  | \begin_inset Formula $\mathbb{R}^{4}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  by using homogeneous coordinates | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \hat{q}=\left[\begin{array}{c} | ||
|  | q\\ | ||
|  | 1 | ||
|  | \end{array}\right]=f(T,p)=\left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | p\\ | ||
|  | 1 | ||
|  | \end{array}\right]=T\hat{p} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The quantity  | ||
|  | \begin_inset Formula $\xihat\hat{p}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  corresponds to a velocity in  | ||
|  | \begin_inset Formula $\mathbb{R}^{4}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  (in the local  | ||
|  | \begin_inset Formula $T$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  frame), and equating it to  | ||
|  | \begin_inset Formula $H(p)\xi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as in Equation  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "eq:Hp" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  yields the  | ||
|  | \begin_inset Formula $4\times6$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  matrix  | ||
|  | \begin_inset Formula $H(p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Foot | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | \begin_inset Formula $H(p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  can also be obtained by taking the  | ||
|  | \begin_inset Formula $j^{th}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  column of each of the 6 generators to multiply with components of  | ||
|  | \begin_inset Formula $\hat{p}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | :  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \xihat\hat{p}=\left[\begin{array}{cc} | ||
|  | \Skew{\omega} & v\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | p\\ | ||
|  | 1 | ||
|  | \end{array}\right]=\left[\begin{array}{c} | ||
|  | \omega\times p+v\\ | ||
|  | 0 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | \Skew{-p} & I_{3}\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | \omega\\ | ||
|  | v | ||
|  | \end{array}\right]=H(p)\xi | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Note how velocities are analogous to points at infinity in projective geometry: | ||
|  |  they correspond to free vectors indicating a direction and magnitude of | ||
|  |  change. | ||
|  |  According to Theorem  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "th:Action" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , the derivative of the group action is then  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{\left(T\hat{p}\right)}{\xi}=TH(p)=\left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | \Skew{-p} & I_{3}\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | R\Skew{-p} & R\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{\left(T\hat{p}\right)}{\hat{p}}=\left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | in homogenous coordinates. | ||
|  |  In  | ||
|  | \begin_inset Formula $\Rthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  this becomes  | ||
|  | \begin_inset Formula $R\left[\begin{array}{cc} | ||
|  | -\Skew p & I_{3}\end{array}\right]$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The derivative of the inverse action  | ||
|  | \begin_inset Formula $T^{-1}p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by Theorem  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "Th:InverseAction" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | 
 | ||
|  | \family roman | ||
|  | \series medium | ||
|  | \shape up | ||
|  | \size normal | ||
|  | \emph off | ||
|  | \bar no | ||
|  | \noun off | ||
|  | \color none | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-H\left(T^{-1}\hat{p}\right)=\left[\begin{array}{cc} | ||
|  | \Skew{T^{-1}\hat{p}} & -I_{3}\end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{\left(T^{-1}\hat{p}\right)}{\hat{p}}=\left[\begin{array}{cc} | ||
|  | R^{T} & -R^{T}t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Example | ||
|  | Let us examine a visual SLAM example. | ||
|  |  We have 2D measurements  | ||
|  | \begin_inset Formula $z_{ij}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , where each measurement is predicted by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | z_{ij}=h(T_{i},p_{j})=\pi(T_{i}^{-1}p_{j})=\pi(q) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $T_{i}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the 3D pose of the  | ||
|  | \begin_inset Formula $i^{th}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  camera,  | ||
|  | \begin_inset Formula $p_{j}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the location of the  | ||
|  | \begin_inset Formula $j^{th}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  point,  | ||
|  | \begin_inset Formula $q=(x',y',z')=T^{-1}p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the point in camera coordinates, and  | ||
|  | \begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the camera projection function from Example  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand ref | ||
|  | reference "ex:projection" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  By the chain rule, we then have | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{h(T,p)}{\xi}=\deriv{\pi(q)}q\deriv{(T^{-1}p)}{\xi}=\frac{1}{z'}\left[\begin{array}{ccc} | ||
|  | 1 & 0 & -x'/z'\\ | ||
|  | 0 & 1 & -y'/z' | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | \Skew q & -I_{3}\end{array}\right]=\left[\begin{array}{cc} | ||
|  | \pi'(q)\Skew q & -\pi'(q)\end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \deriv{h(T,p)}p=\pi'(q)R^{T} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Instantaneous Velocity | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | For rigid 3D transformations  | ||
|  | \begin_inset Formula $T_{b}^{n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  from a body frame  | ||
|  | \begin_inset Formula $b$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to a navigation frame  | ||
|  | \begin_inset Formula $n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we have the instantaneous spatial twist  | ||
|  | \begin_inset Formula $\xi_{nb}^{n}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  measured in the navigation frame, | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \hat{\xi}_{nb}^{n}\define\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and the instantaneous body twist  | ||
|  | \begin_inset Formula $\xi_{nb}^{b}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  measured in the body frame: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \hat{\xi}_{nb}^{b}\define\left(T_{b}^{n}\right)^{T}\dot{T}_{b}^{n} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Pushforwards of Mappings | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | As we can express the Adjoint representation in terms of twist coordinates, | ||
|  |  we have | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \left[\begin{array}{c} | ||
|  | \omega'\\ | ||
|  | v' | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | R & 0\\ | ||
|  | \Skew tR & R | ||
|  | \end{array}\right]\left[\begin{array}{c} | ||
|  | \omega\\ | ||
|  | v | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Hence, as with  | ||
|  | \begin_inset Formula $\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we are now in a position to simply posit the derivative of  | ||
|  | \series bold | ||
|  | inverse | ||
|  | \series default | ||
|  | , | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial T^{-1}}{\partial\xi}=\Ad T=-\left[\begin{array}{cc} | ||
|  | R & 0\\ | ||
|  | \Skew tR & R | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \series bold | ||
|  | compose | ||
|  | \series default | ||
|  |  in its first argument, | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{2}^{-1}} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  in its second argument, | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{6} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \series bold | ||
|  | between | ||
|  | \series default | ||
|  |  in its first argument, | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{2}^{^{-1}}T_{1}} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and in its second argument, | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | \frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}} & = & I_{6} | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection | ||
|  | Retractions | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | For  | ||
|  | \begin_inset Formula $\SEthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , instead of using the true exponential map it is computationally more efficient | ||
|  |  to design other retractions. | ||
|  |  A first-order approximation to the exponential map does not quite cut it, | ||
|  |  as it yields a  | ||
|  | \begin_inset Formula $4\times4$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  matrix which is not in  | ||
|  | \begin_inset Formula $\SEthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | :  | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | T\exp\xihat & \approx & T(I+\xihat)\\ | ||
|  |  & = & T\left(I_{4}+\left[\begin{array}{cc} | ||
|  | \Skew{\omega} & v\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]\right)\\ | ||
|  |  & = & \left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | I_{3}+\Skew{\omega} & v\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\\ | ||
|  |  & = & \left[\begin{array}{cc} | ||
|  | R\left(I_{3}+\Skew{\omega}\right) & t+Rv\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right] | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | However, we can make it into a retraction by using any retraction defined | ||
|  |  for  | ||
|  | \begin_inset Formula $\SOthree$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , including, as below, using the exponential map  | ||
|  | \begin_inset Formula $Re^{\Skew{\omega}}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \retract_{T}\left(\left[\begin{array}{c} | ||
|  | \omega\\ | ||
|  | v | ||
|  | \end{array}\right]\right)=\left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | e^{\Skew{\omega}} & v\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | Re^{\Skew{\omega}} & t+Rv\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Similarly, for a second order approximation we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | T\exp\xihat & \approx & T(I+\xihat+\frac{\xihat^{2}}{2})\\ | ||
|  |  & = & T\left(I_{4}+\left[\begin{array}{cc} | ||
|  | \Skew{\omega} & v\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]+\frac{1}{2}\left[\begin{array}{cc} | ||
|  | \Skew{\omega} & v\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | \Skew{\omega} & v\\ | ||
|  | 0 & 0 | ||
|  | \end{array}\right]\right)\\ | ||
|  |  & = & \left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left(\left[\begin{array}{cc} | ||
|  | I_{3}+\Skew{\omega}+\frac{1}{2}\Skew{\omega}^{2} & v+\frac{1}{2}\Skew{\omega}v\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\right)\\ | ||
|  |  & = & \left[\begin{array}{cc} | ||
|  | R\left(I_{3}+\Skew{\omega}+\frac{1}{2}\Skew{\omega}^{2}\right) & t+R\left[v+\left(\omega\times v\right)/2\right]\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right] | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | inspiring the retraction | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \retract_{T}\left(\left[\begin{array}{c} | ||
|  | \omega\\ | ||
|  | v | ||
|  | \end{array}\right]\right)=\left[\begin{array}{cc} | ||
|  | R & t\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]\left[\begin{array}{cc} | ||
|  | e^{\Skew{\omega}} & v+\left(\omega\times v\right)/2\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right]=\left[\begin{array}{cc} | ||
|  | Re^{\Skew{\omega}} & t+R\left[v+\left(\omega\times v\right)/2\right]\\ | ||
|  | 0 & 1 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Newpage pagebreak | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | 2D Line Segments (Ocaml) | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The error between an infinite line  | ||
|  | \begin_inset Formula $(a,b,c)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and a 2D line segment  | ||
|  | \begin_inset Formula $((x1,y1),(x2,y2))$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is defined in Line3.ml. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Line3vd (Ocaml) | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | One representation of a line is through 2 vectors  | ||
|  | \begin_inset Formula $(v,d)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , where  | ||
|  | \begin_inset Formula $v$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the direction and the vector  | ||
|  | \begin_inset Formula $d$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  points from the orgin to the closest point on the line. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | In this representation, transforming a 3D line from a world coordinate frame | ||
|  |  to a camera at  | ||
|  | \begin_inset Formula $(R_{w}^{c},t^{w})$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is done by | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | v^{c}=R_{w}^{c}v^{w} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | d^{c}=R_{w}^{c}\left(d^{w}+(t^{w}v^{w})v^{w}-t^{w}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Line3 (Ocaml) | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | For 3D lines, we use a parameterization due to C.J. | ||
|  |  Taylor, using a rotation matrix  | ||
|  | \begin_inset Formula $R$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and 2 scalars  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $b$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  The line direction  | ||
|  | \begin_inset Formula $v$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is simply the Z-axis of the rotated frame, i.e.,  | ||
|  | \begin_inset Formula $v=R_{3}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , while the vector  | ||
|  | \begin_inset Formula $d$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is given by  | ||
|  | \begin_inset Formula $d=aR_{1}+bR_{2}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Now, we will  | ||
|  | \emph on | ||
|  | not | ||
|  | \emph default | ||
|  |  use the incremental rotation scheme we used for rotations: because the | ||
|  |  matrix R translates from the line coordinate frame to the world frame, | ||
|  |  we need to apply the incremental rotation on the right-side: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | R'=R(I+\Omega) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Projecting a line to 2D can be done easily, as both  | ||
|  | \begin_inset Formula $v$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $d$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  are also the 2D homogenous coordinates of two points on the projected line, | ||
|  |  and hence we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | l & = & v\times d\\ | ||
|  |  & = & R_{3}\times\left(aR_{1}+bR_{2}\right)\\ | ||
|  |  & = & a\left(R_{3}\times R_{1}\right)+b\left(R_{3}\times R_{2}\right)\\ | ||
|  |  & = & aR_{2}-bR_{1} | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | This can be written as a rotation of a point, | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | l=R\left(\begin{array}{c} | ||
|  | -b\\ | ||
|  | a\\ | ||
|  | 0 | ||
|  | \end{array}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | but because the incremental rotation is now done on the right, we need to | ||
|  |  figure out the derivatives again: | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \frac{\partial(R(I+\Omega)x)}{\partial\omega}=\frac{\partial(R\Omega x)}{\partial\omega}=R\frac{\partial(\Omega x)}{\partial\omega}=R\Skew{-x}\label{eq:rotateRight} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and hence the derivative of the projection  | ||
|  | \begin_inset Formula $l$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  with respect to the rotation matrix  | ||
|  | \begin_inset Formula $R$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | of the 3D line is  | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \frac{\partial(l)}{\partial\omega}=R\Skew{\left(\begin{array}{c} | ||
|  | b\\ | ||
|  | -a\\ | ||
|  | 0 | ||
|  | \end{array}\right)}=\left[\begin{array}{ccc} | ||
|  | aR_{3} & bR_{3} & -(aR_{1}+bR_{2})\end{array}\right] | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | or the  | ||
|  | \begin_inset Formula $a,b$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  scalars: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial(l)}{\partial a}=R_{2} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial(l)}{\partial b}=-R_{1} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Transforming a 3D line  | ||
|  | \begin_inset Formula $(R,(a,b))$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  from a world coordinate frame to a camera frame  | ||
|  | \begin_inset Formula $(R_{w}^{c},t^{w})$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is done by | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | R'=R_{w}^{c}R | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | a'=a-R_{1}^{T}t^{w} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | b'=b-R_{2}^{T}t^{w} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Again, we need to redo the derivatives, as R is incremented from the right. | ||
|  |  The first argument is incremented from the left, but the result is incremented | ||
|  |  on the right: | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | R'(I+\Omega')=(AB)(I+\Omega') & = & (I+\Skew{S\omega})AB\\ | ||
|  | I+\Omega' & = & (AB)^{T}(I+\Skew{S\omega})(AB)\\ | ||
|  | \Omega' & = & R'^{T}\Skew{S\omega}R'\\ | ||
|  | \Omega' & = & \Skew{R'^{T}S\omega}\\ | ||
|  | \omega' & = & R'^{T}S\omega | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | For the second argument  | ||
|  | \begin_inset Formula $R$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we now simply have: | ||
|  | \begin_inset Formula  | ||
|  | \begin{eqnarray*} | ||
|  | AB(I+\Omega') & = & AB(I+\Omega)\\ | ||
|  | \Omega' & = & \Omega\\ | ||
|  | \omega' & = & \omega | ||
|  | \end{eqnarray*} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The scalar derivatives can be found by realizing that  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \left(\begin{array}{c} | ||
|  | a'\\ | ||
|  | b'\\ | ||
|  | ... | ||
|  | \end{array}\right)=\left(\begin{array}{c} | ||
|  | a\\ | ||
|  | b\\ | ||
|  | 0 | ||
|  | \end{array}\right)-R^{T}t^{w} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where we don't care about the third row. | ||
|  |  Hence | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{\partial(\left(R(I+\Omega_{2})\right)^{T}t^{w})}{\partial\omega}=-\frac{\partial(\Omega_{2}R^{T}t^{w})}{\partial\omega}=-\Skew{R^{T}t^{w}}=\left[\begin{array}{ccc} | ||
|  | 0 & R_{3}^{T}t^{w} & -R_{2}^{T}t^{w}\\ | ||
|  | -R_{3}^{T}t^{w} & 0 & R_{1}^{T}t^{w}\\ | ||
|  | ... & ... & 0 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | 
 | ||
|  | \series bold | ||
|  | Aligning 3D Scans | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Below is the explanaition underlying Pose3.align, i.e. | ||
|  |  aligning two point clouds using SVD. | ||
|  |  Inspired but modified from CVOnline... | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | 
 | ||
|  | \emph on | ||
|  | Our | ||
|  | \emph default | ||
|  |  model is | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | p^{c}=R\left(p^{w}-t\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | i.e.,  | ||
|  | \begin_inset Formula $R$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is from camera to world, and  | ||
|  | \begin_inset Formula $t$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the camera location in world coordinates. | ||
|  |  The objective function is | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \frac{1}{2}\sum\left(p^{c}-R(p^{w}-t)\right)^{2}=\frac{1}{2}\sum\left(p^{c}-Rp^{w}+Rt\right)^{2}=\frac{1}{2}\sum\left(p^{c}-Rp^{w}-t'\right)^{2}\label{eq:J} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $t'=-Rt$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the location of the origin in the camera frame. | ||
|  |  Taking the derivative with respect to  | ||
|  | \begin_inset Formula $t'$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and setting to zero we have | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \sum\left(p^{c}-Rp^{w}-t'\right)=0 | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | or | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | t'=\frac{1}{n}\sum\left(p^{c}-Rp^{w}\right)=\bar{p}^{c}-R\bar{p}^{w}\label{eq:t} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | here  | ||
|  | \begin_inset Formula $\bar{p}^{c}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $\bar{p}^{w}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  are the point cloud centroids. | ||
|  |  Substituting back into  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:J" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we get | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{1}{2}\sum\left(p^{c}-R(p^{w}-t)\right)^{2}=\frac{1}{2}\sum\left(\left(p^{c}-\bar{p}^{c}\right)-R\left(p^{w}-\bar{p}^{w}\right)\right)^{2}=\frac{1}{2}\sum\left(\hat{p}^{c}-R\hat{p}^{w}\right)^{2} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Now, to minimize the above it suffices to maximize (see CVOnline)  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \mathop{trace}\left(R^{T}C\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $C=\sum\hat{p}^{c}\left(\hat{p}^{w}\right)^{T}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the correlation matrix. | ||
|  |  Intuitively, the cloud of points is rotated to align with the principal | ||
|  |  axes. | ||
|  |  This can be achieved by SVD decomposition on  | ||
|  | \begin_inset Formula $C$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | C=USV^{T} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and setting  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | R=UV^{T} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Clearly, from  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:t" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we then also recover the optimal  | ||
|  | \begin_inset Formula $t$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | t=\bar{p}^{w}-R^{T}\bar{p}^{c} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section* | ||
|  | Appendix | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection* | ||
|  | Differentiation Rules | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Spivak  | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | key "Spivak65book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  also notes some multivariate derivative rules defined component-wise, but | ||
|  |  they are not that useful in practice: | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Itemize | ||
|  | Since  | ||
|  | \begin_inset Formula $f:\Multi nm$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is defined in terms of  | ||
|  | \begin_inset Formula $m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  component functions  | ||
|  | \begin_inset Formula $f^{i}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then  | ||
|  | \begin_inset Formula $f$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is differentiable at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  iff each  | ||
|  | \begin_inset Formula $f^{i}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is, and the Jacobian matrix  | ||
|  | \begin_inset Formula $F_{a}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the  | ||
|  | \begin_inset Formula $m\times n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  matrix whose  | ||
|  | \begin_inset Formula $i^{th}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  row is  | ||
|  | \begin_inset Formula $\left(f^{i}\right)'(a)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | :  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | F_{a}\define f'(a)=\left[\begin{array}{c} | ||
|  | \left(f^{1}\right)'(a)\\ | ||
|  | \vdots\\ | ||
|  | \left(f^{m}\right)'(a) | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Itemize | ||
|  | Scalar differentiation rules: if  | ||
|  | \begin_inset Formula $f,g:\OneD n$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  are differentiable at  | ||
|  | \begin_inset Formula $a$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | (f+g)'(a)=F_{a}+G_{a} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | (f\cdot g)'(a)=g(a)F_{a}+f(a)G_{a} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | (f/g)'(a)=\frac{1}{g(a)^{2}}\left[g(a)F_{a}-f(a)G_{a}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection* | ||
|  | Tangent Spaces and the Tangent Bundle | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The following is adapted from Appendix A in  | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | key "Murray94book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The  | ||
|  | \series bold | ||
|  | tangent space | ||
|  | \series default | ||
|  |   | ||
|  | \begin_inset Formula $T_{p}M$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  of a manifold  | ||
|  | \begin_inset Formula $M$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at a point  | ||
|  | \begin_inset Formula $p\in M$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the vector space of  | ||
|  | \series bold | ||
|  | tangent vectors | ||
|  | \series default | ||
|  |  at  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  The  | ||
|  | \series bold | ||
|  | tangent bundle | ||
|  | \series default | ||
|  |   | ||
|  | \begin_inset Formula $TM$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the set of all tangent vectors | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | TM\define\bigcup_{p\in M}T_{p}M | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | A  | ||
|  | \series bold | ||
|  | vector field | ||
|  | \series default | ||
|  |   | ||
|  | \begin_inset Formula $X:M\rightarrow TM$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  assigns a single tangent vector  | ||
|  | \begin_inset Formula $x\in T_{p}M$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to each point  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | If  | ||
|  | \begin_inset Formula $F:M\rightarrow N$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is a smooth map from a manifold  | ||
|  | \begin_inset Formula $M$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to a manifold  | ||
|  | \begin_inset Formula $N$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then we can define the | ||
|  | \series bold | ||
|  |  tangent map | ||
|  | \series default | ||
|  |  of  | ||
|  | \begin_inset Formula $F$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as the linear map  | ||
|  | \begin_inset Formula $F_{*p}:T_{p}M\rightarrow T_{F(p)}N$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  that maps tangent vectors in  | ||
|  | \begin_inset Formula $T_{p}M$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $p$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to tangent vectors in  | ||
|  | \begin_inset Formula $T_{F(p)}N$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at the image  | ||
|  | \begin_inset Formula $F(p)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsection* | ||
|  | Homomorphisms | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | The following  | ||
|  | \emph on | ||
|  | might be | ||
|  | \emph default | ||
|  |  relevant  | ||
|  | \begin_inset CommandInset citation | ||
|  | LatexCommand cite | ||
|  | after "page 45" | ||
|  | key "Hall00book" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : suppose that  | ||
|  | \begin_inset Formula $\Phi:G\rightarrow H$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is a mapping (Lie group homomorphism). | ||
|  |  Then there exists a unique linear map  | ||
|  | \begin_inset Formula $\phi:\gg\rightarrow\mathfrak{h}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |   | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(e^{t\xhat}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | such that | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Enumerate | ||
|  | \begin_inset Formula $\Phi\left(e^{\xhat}\right)=e^{\phi\left(\xhat\right)}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Enumerate | ||
|  | \begin_inset Formula $\phi\left(T\xhat T^{-1}\right)=\Phi(T)\phi(\xhat)\Phi(T^{-1})$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Enumerate | ||
|  | \begin_inset Formula $\phi\left([\xhat,\yhat]\right)=\left[\phi(\xhat),\phi(\yhat)\right]$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | In other words, the map  | ||
|  | \begin_inset Formula $\phi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is the derivative of  | ||
|  | \begin_inset Formula $\Phi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at the identity. | ||
|  |  As an example, suppose  | ||
|  | \begin_inset Formula $\Phi(g)=g^{-1}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then the corresponding derivative  | ||
|  | \emph on | ||
|  | at the identity  | ||
|  | \emph default | ||
|  | is | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\left(e^{t\xhat}\right)^{-1}=\lim_{t\rightarrow0}\frac{d}{dt}e^{-t\xhat}=-\xhat\lim_{t\rightarrow0}e^{-t\xhat}=-\xhat | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | In general it suffices to compute  | ||
|  | \begin_inset Formula $\phi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for a basis of  | ||
|  | \begin_inset Formula $\gg$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Note Note | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | Undercooked: What if we want the derivative of  | ||
|  | \begin_inset Formula $\Phi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at some other element  | ||
|  | \begin_inset Formula $g$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ? In other words, if we apply  | ||
|  | \begin_inset Formula $\Phi$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  at  | ||
|  | \begin_inset Formula $g$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  incremented by some Lie algebra element  | ||
|  | \begin_inset Formula $e^{\xhat}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , then we are looking for a  | ||
|  | \begin_inset Formula $\yhat\in\gg$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  will yield the same result:  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Phi\left(g\right)\lim_{t\rightarrow0}\frac{d}{dt}e^{t\yhat}=\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(ge^{t\xhat}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \lim_{t\rightarrow0}\frac{d}{dt}e^{t\yhat}=\Phi\left(g\right)^{-1}\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(ge^{t\xhat}\right) | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Note Note | ||
|  | status collapsed | ||
|  | 
 | ||
|  | \begin_layout Plain Layout | ||
|  | Let us define two mappings | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \Phi_{1}(A)=AB\mbox{ and }\Phi_{2}(B)=AB | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Then  | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \phi_{1}(\xhat)=\lim_{t\rightarrow0}\frac{d}{dt}\Phi_{1}\left(e^{t\xhat}B\right)= | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset CommandInset bibtex | ||
|  | LatexCommand bibtex | ||
|  | bibfiles "/Users/dellaert/papers/refs" | ||
|  | options "plain" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | 
 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_body | ||
|  | \end_document |