5747 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			Plaintext
		
	
	
		
		
			
		
	
	
			5747 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			Plaintext
		
	
	
| 
								 | 
							
								#LyX 2.0 created this file. For more info see http://www.lyx.org/
							 | 
						||
| 
								 | 
							
								\lyxformat 413
							 | 
						||
| 
								 | 
							
								\begin_document
							 | 
						||
| 
								 | 
							
								\begin_header
							 | 
						||
| 
								 | 
							
								\textclass article
							 | 
						||
| 
								 | 
							
								\use_default_options false
							 | 
						||
| 
								 | 
							
								\begin_modules
							 | 
						||
| 
								 | 
							
								eqs-within-sections
							 | 
						||
| 
								 | 
							
								figs-within-sections
							 | 
						||
| 
								 | 
							
								theorems-ams-bytype
							 | 
						||
| 
								 | 
							
								\end_modules
							 | 
						||
| 
								 | 
							
								\maintain_unincluded_children false
							 | 
						||
| 
								 | 
							
								\language english
							 | 
						||
| 
								 | 
							
								\language_package default
							 | 
						||
| 
								 | 
							
								\inputencoding auto
							 | 
						||
| 
								 | 
							
								\fontencoding global
							 | 
						||
| 
								 | 
							
								\font_roman times
							 | 
						||
| 
								 | 
							
								\font_sans default
							 | 
						||
| 
								 | 
							
								\font_typewriter default
							 | 
						||
| 
								 | 
							
								\font_default_family rmdefault
							 | 
						||
| 
								 | 
							
								\use_non_tex_fonts false
							 | 
						||
| 
								 | 
							
								\font_sc false
							 | 
						||
| 
								 | 
							
								\font_osf false
							 | 
						||
| 
								 | 
							
								\font_sf_scale 100
							 | 
						||
| 
								 | 
							
								\font_tt_scale 100
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\graphics default
							 | 
						||
| 
								 | 
							
								\default_output_format default
							 | 
						||
| 
								 | 
							
								\output_sync 0
							 | 
						||
| 
								 | 
							
								\bibtex_command default
							 | 
						||
| 
								 | 
							
								\index_command default
							 | 
						||
| 
								 | 
							
								\paperfontsize 12
							 | 
						||
| 
								 | 
							
								\spacing single
							 | 
						||
| 
								 | 
							
								\use_hyperref false
							 | 
						||
| 
								 | 
							
								\papersize default
							 | 
						||
| 
								 | 
							
								\use_geometry true
							 | 
						||
| 
								 | 
							
								\use_amsmath 1
							 | 
						||
| 
								 | 
							
								\use_esint 0
							 | 
						||
| 
								 | 
							
								\use_mhchem 1
							 | 
						||
| 
								 | 
							
								\use_mathdots 1
							 | 
						||
| 
								 | 
							
								\cite_engine basic
							 | 
						||
| 
								 | 
							
								\use_bibtopic false
							 | 
						||
| 
								 | 
							
								\use_indices false
							 | 
						||
| 
								 | 
							
								\paperorientation portrait
							 | 
						||
| 
								 | 
							
								\suppress_date false
							 | 
						||
| 
								 | 
							
								\use_refstyle 0
							 | 
						||
| 
								 | 
							
								\index Index
							 | 
						||
| 
								 | 
							
								\shortcut idx
							 | 
						||
| 
								 | 
							
								\color #008000
							 | 
						||
| 
								 | 
							
								\end_index
							 | 
						||
| 
								 | 
							
								\leftmargin 1in
							 | 
						||
| 
								 | 
							
								\topmargin 1in
							 | 
						||
| 
								 | 
							
								\rightmargin 1in
							 | 
						||
| 
								 | 
							
								\bottommargin 1in
							 | 
						||
| 
								 | 
							
								\secnumdepth 3
							 | 
						||
| 
								 | 
							
								\tocdepth 3
							 | 
						||
| 
								 | 
							
								\paragraph_separation indent
							 | 
						||
| 
								 | 
							
								\paragraph_indentation default
							 | 
						||
| 
								 | 
							
								\quotes_language english
							 | 
						||
| 
								 | 
							
								\papercolumns 1
							 | 
						||
| 
								 | 
							
								\papersides 1
							 | 
						||
| 
								 | 
							
								\paperpagestyle default
							 | 
						||
| 
								 | 
							
								\tracking_changes false
							 | 
						||
| 
								 | 
							
								\output_changes false
							 | 
						||
| 
								 | 
							
								\html_math_output 0
							 | 
						||
| 
								 | 
							
								\html_css_as_file 0
							 | 
						||
| 
								 | 
							
								\html_be_strict false
							 | 
						||
| 
								 | 
							
								\end_header
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_body
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Title
							 | 
						||
| 
								 | 
							
								Derivatives and Differentials
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Author
							 | 
						||
| 
								 | 
							
								Frank Dellaert
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Box Frameless
							 | 
						||
| 
								 | 
							
								position "t"
							 | 
						||
| 
								 | 
							
								hor_pos "c"
							 | 
						||
| 
								 | 
							
								has_inner_box 1
							 | 
						||
| 
								 | 
							
								inner_pos "t"
							 | 
						||
| 
								 | 
							
								use_parbox 0
							 | 
						||
| 
								 | 
							
								use_makebox 0
							 | 
						||
| 
								 | 
							
								width "100col%"
							 | 
						||
| 
								 | 
							
								special "none"
							 | 
						||
| 
								 | 
							
								height "1in"
							 | 
						||
| 
								 | 
							
								height_special "totalheight"
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\SqrMah}[3]{\Vert{#1}-{#2}\Vert_{#3}^{2}}
							 | 
						||
| 
								 | 
							
								{\Vert{#1}-{#2}\Vert_{#3}^{2}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\SqrZMah}[2]{\Vert{#1}\Vert_{#2}^{2}}
							 | 
						||
| 
								 | 
							
								{\Vert{#1}\Vert_{#2}^{2}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Rone}{\mathbb{R}}
							 | 
						||
| 
								 | 
							
								{\mathbb{R}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Reals}[1]{\mathbb{R}^{#1}}
							 | 
						||
| 
								 | 
							
								{\mathbb{R}^{#1}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\OneD}[1]{\Reals{#1}\rightarrow\Rone}
							 | 
						||
| 
								 | 
							
								{\Reals{#1}\rightarrow\Rone}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Multi}[2]{\Reals{#1}\rightarrow\Reals{#2}}
							 | 
						||
| 
								 | 
							
								{\Reals{#1}\rightarrow\Reals{#2}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Man}{\mathcal{M}}
							 | 
						||
| 
								 | 
							
								{\mathcal{M}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset Note Comment
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								Derivatives
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}}
							 | 
						||
| 
								 | 
							
								{\frac{\partial#1}{\partial#2}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\at}[2]{#1\biggr\rvert_{#2}}
							 | 
						||
| 
								 | 
							
								{#1\biggr\rvert_{#2}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} }
							 | 
						||
| 
								 | 
							
								{\at{\deriv{#1}{#2}}{#3}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset Note Comment
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								Lie Groups
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\xhat}{\hat{x}}
							 | 
						||
| 
								 | 
							
								{\hat{x}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\yhat}{\hat{y}}
							 | 
						||
| 
								 | 
							
								{\hat{y}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Ad}[1]{Ad_{#1}}
							 | 
						||
| 
								 | 
							
								{Ad_{#1}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\define}{\stackrel{\Delta}{=}}
							 | 
						||
| 
								 | 
							
								{\stackrel{\Delta}{=}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\gg}{\mathfrak{g}}
							 | 
						||
| 
								 | 
							
								{\mathfrak{g}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Rn}{\mathbb{R}^{n}}
							 | 
						||
| 
								 | 
							
								{\mathbb{R}^{n}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset Note Comment
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								SO(2)
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Rtwo}{\mathbb{R}^{2}}
							 | 
						||
| 
								 | 
							
								{\mathbb{R}^{2}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\SOtwo}{SO(2)}
							 | 
						||
| 
								 | 
							
								{SO(2)}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\sotwo}{\mathfrak{so(2)}}
							 | 
						||
| 
								 | 
							
								{\mathfrak{so(2)}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\that}{\hat{\theta}}
							 | 
						||
| 
								 | 
							
								{\hat{\theta}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\skew}[1]{[#1]_{+}}
							 | 
						||
| 
								 | 
							
								{[#1]_{+}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset Note Comment
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								SE(2)
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\SEtwo}{SE(2)}
							 | 
						||
| 
								 | 
							
								{SE(2)}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\setwo}{\mathfrak{se(2)}}
							 | 
						||
| 
								 | 
							
								{\mathfrak{se(2)}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset Note Comment
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								SO(3)
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Rthree}{\mathbb{R}^{3}}
							 | 
						||
| 
								 | 
							
								{\mathbb{R}^{3}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\SOthree}{SO(3)}
							 | 
						||
| 
								 | 
							
								{SO(3)}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\sothree}{\mathfrak{so(3)}}
							 | 
						||
| 
								 | 
							
								{\mathfrak{so(3)}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\what}{\hat{\omega}}
							 | 
						||
| 
								 | 
							
								{\hat{\omega}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Skew}[1]{[#1]_{\times}}
							 | 
						||
| 
								 | 
							
								{[#1]_{\times}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset Note Comment
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								SE(3)
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\Rsix}{\mathbb{R}^{6}}
							 | 
						||
| 
								 | 
							
								{\mathbb{R}^{6}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\SEthree}{SE(3)}
							 | 
						||
| 
								 | 
							
								{SE(3)}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\sethree}{\mathfrak{se(3)}}
							 | 
						||
| 
								 | 
							
								{\mathfrak{se(3)}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\xihat}{\hat{\xi}}
							 | 
						||
| 
								 | 
							
								{\hat{\xi}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Part
							 | 
						||
| 
								 | 
							
								Theory
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								Optimization
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								We will be concerned with minimizing a non-linear least squares objective
							 | 
						||
| 
								 | 
							
								 of the form 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								x^{*}=\arg\min_{x}\SqrMah{h(x)}z{\Sigma}\label{eq:objective}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $x\in\Man$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is a point on an 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-dimensional manifold (which could be 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, an n-dimensional Lie group 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, or a general manifold 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Man)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $z\in\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is an observed measurement, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $h:\Man\rightarrow\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is a measurement function that predicts 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $z$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 from 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $x$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SqrZMah e{\Sigma}\define e^{T}\Sigma^{-1}e$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the squared Mahalanobis distance with covariance 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Sigma$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								To minimize 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:objective"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we need a notion of how the non-linear measurement function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $h(x)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 behaves in the neighborhood of a linearization point 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Loosely speaking, we would like to define an 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $m\times n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 Jacobian matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 such that
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								h(a\oplus\xi)\approx h(a)+H_{a}\xi\label{eq:LocalBehavior}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi\in\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and the operation 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\oplus$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Quotes eld
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								increments
							 | 
						||
| 
								 | 
							
								\begin_inset Quotes erd
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a\in\Man$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Below we more formally develop this notion, first for functions from 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Multi nm$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then for Lie groups, and finally for manifolds.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Once equipped with the approximation 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:LocalBehavior"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we can minimize the objective function 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:objective"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with respect to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\delta x$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 instead:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\xi^{*}=\arg\min_{\xi}\SqrMah{h(a)+H_{a}\xi}z{\Sigma}\label{eq:ApproximateObjective}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This can be done by setting the derivative of 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:ApproximateObjective"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to zero,
							 | 
						||
| 
								 | 
							
								\begin_inset Note Note
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{1}{2}H_{a}^{T}(h(a)+H_{a}\xi-z)=0
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 yielding the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								normal equations
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								H_{a}^{T}H_{a}\xi=H_{a}^{T}\left(z-h(a)\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								which can be solved using Cholesky factorization.
							 | 
						||
| 
								 | 
							
								 Of course, we might have to iterate this multiple times, and use a trust-region
							 | 
						||
| 
								 | 
							
								 method to bound 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 when the approximation 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:LocalBehavior"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is not good.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								Multivariate Differentiation
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Derivatives
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								For a vector space 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, the notion of an increment is just done by vector addition
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								a\oplus\xi\define a+\xi
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and for the approximation 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "eq:LocalBehavior"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we will use a Taylor expansion using multivariate differentiation.
							 | 
						||
| 
								 | 
							
								 However, loosely following 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								key "Spivak65book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we use a perhaps unfamiliar way to define derivatives:
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Definition
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "def:differentiable"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We define a function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\Multi nm$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to be 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								differentiable
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 if there exists a matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)\in\Reals{m\times n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 such that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\lim_{\delta x\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f(a+\xi)\right|}{\left|\xi\right|}=0
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\left|e\right|\define\sqrt{e^{T}e}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the usual norm.
							 | 
						||
| 
								 | 
							
								 If 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is differentiable, then the matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is called the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								Jacobian matrix
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and the linear map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is called the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								derivative
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 When no confusion is likely, we use the notation 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $F_{a}\define f'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to stress that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is a matrix.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The benefit of using this definition is that it generalizes the notion of
							 | 
						||
| 
								 | 
							
								 a scalar derivative 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a):\Rone\rightarrow\Rone$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to multivariate functions from 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Multi nm$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 In particular, the derivative 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Df_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 maps vector increments 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to increments 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, such that this linear map locally approximates 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f(a+\xi)\approx f(a)+f'(a)\xi
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "ex:projection"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 projects a 3D point 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(x,y,z)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to the image plane, and has the Jacobian matrix
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\pi'(x,y,z)=\frac{1}{z}\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								1 & 0 & -x/z\\
							 | 
						||
| 
								 | 
							
								0 & 1 & -y/z
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Properties of Derivatives
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								This notion of a multivariate derivative obeys the usual rules:
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								(Chain rule) If 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\Multi np$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is differentiable at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g:\Multi pm$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is differentiable at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								,
							 | 
						||
| 
								 | 
							
								\begin_inset Note Note
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\strikeout off
							 | 
						||
| 
								 | 
							
								\uuline off
							 | 
						||
| 
								 | 
							
								\uwave off
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								 then 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D(g\circ f)_{a}=Dg_{f(a)}\circ Df_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 then the Jacobian matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $h=g\circ f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $m\times n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 matrix product 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								H_{a}=G_{f(a)}F_{a}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								See 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								key "Spivak65book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "ex:chain-rule"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								If we follow the projection 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\pi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 by a calibration step 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\gamma:(x,y)\mapsto(u_{0}+fx,u_{0}+fy)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\gamma'(x,y)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								f & 0\\
							 | 
						||
| 
								 | 
							
								0 & f
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								then the combined function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\gamma\circ\pi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 has the Jacobian matrix
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								(\gamma\circ\pi)'(x,y)=\frac{f}{z}\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								1 & 0 & -x/z\\
							 | 
						||
| 
								 | 
							
								0 & 1 & -y/z
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								(Inverse) If 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\Multi nn$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is differentiable and has a differentiable inverse 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g\define f^{-1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then its Jacobian matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is just the inverse of that of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, evaluated at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								G_{a}=\left[F_{g(a)}\right]^{-1}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								See 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								key "Spivak65book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "ex:inverse"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:(x,y)\mapsto(x^{2},xy)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 has the Jacobian matrix
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								F_{(x,y)}=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								2x & 0\\
							 | 
						||
| 
								 | 
							
								y & x
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and, for 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $x\geq0$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, its inverse is the function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g:(x,y)\mapsto(x^{1/2},x^{-1/2}y)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with the Jacobian matrix
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								G_{(x,y)}=\frac{1}{2}\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								x^{-1/2} & 0\\
							 | 
						||
| 
								 | 
							
								-x^{-3/2}y & 2x^{-1/2}
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								It is easily verified that
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								g'(a,b)f'(a^{1/2},a^{-1/2}b)=\frac{1}{2}\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								a^{-1/2} & 0\\
							 | 
						||
| 
								 | 
							
								-a^{-3/2}b & 2a^{-1/2}
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								2a^{1/2} & 0\\
							 | 
						||
| 
								 | 
							
								a^{-1/2}b & a^{1/2}
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								1 & 0\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Problem
							 | 
						||
| 
								 | 
							
								Verify the above for 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(a,b)=(4,6)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Sketch the situation graphically to get insight.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Computing Multivariate Derivatives
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Computing derivatives is made easy by defining the concept of a partial
							 | 
						||
| 
								 | 
							
								 derivative:
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Definition
							 | 
						||
| 
								 | 
							
								For 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\OneD n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								partial derivative
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								,
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								D_{j}f(a)\define\lim_{h\rightarrow0}\frac{f\left(a^{1},\ldots,a^{j}+h,\ldots,a^{n}\right)-f\left(a^{1},\ldots,a^{n}\right)}{h}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								which is the ordinary derivative of the scalar function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g(x)\define f\left(a^{1},\ldots,x,\ldots,a^{n}\right)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Using this definition, one can show that the Jacobian matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $F_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 of a differentiable 
							 | 
						||
| 
								 | 
							
								\emph on
							 | 
						||
| 
								 | 
							
								multivariate
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								 function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\Multi nm$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 consists simply of the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $m\times n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 partial derivatives 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D_{j}f^{i}(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, evaluated at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a\in\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								F_{a}=\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								D_{1}f^{1}(a) & \cdots & D_{n}f^{1}(a)\\
							 | 
						||
| 
								 | 
							
								\vdots & \ddots & \vdots\\
							 | 
						||
| 
								 | 
							
								D_{1}f^{m}(a) & \ldots & D_{n}f^{m}(a)
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Problem
							 | 
						||
| 
								 | 
							
								Verify the derivatives in Examples 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "ex:projection"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "ex:inverse"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Newpage pagebreak
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								Multivariate Functions on Lie Groups
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Lie Groups
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Lie groups are not as easy to treat as the vector space 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 but nevertheless have a lot of structure.
							 | 
						||
| 
								 | 
							
								 To generalize the concept of the total derivative above we just need to
							 | 
						||
| 
								 | 
							
								 replace 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a\oplus\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 in 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:ApproximateObjective"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with a suitable operation in the Lie group 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 In particular, the notion of an exponential map allows us to define an
							 | 
						||
| 
								 | 
							
								 incremental transformation as tracing out a geodesic curve on the group
							 | 
						||
| 
								 | 
							
								 manifold along a certain 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								tangent vector
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								a\oplus\xi\define a\exp\left(\hat{\xi}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi\in\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 for an 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-dimensional Lie group, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\hat{\xi}\in\mathfrak{g}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 the Lie algebra element corresponding to the vector 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\exp\hat{\xi}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 the exponential map.
							 | 
						||
| 
								 | 
							
								 Note that if 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is equal to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 then composing with the exponential map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $ae^{\xihat}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is just vector addition 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a+\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								For the Lie group 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 of 3D rotations the vector 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is denoted as 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\omega$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and represents an angular displacement.
							 | 
						||
| 
								 | 
							
								 The Lie algebra element 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xihat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is a skew symmetric matrix denoted as 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Skew{\omega}\in\sothree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Skew{\omega}=\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & -\omega_{z} & \omega_{y}\\
							 | 
						||
| 
								 | 
							
								\omega_{z} & 0 & -\omega_{x}\\
							 | 
						||
| 
								 | 
							
								-\omega_{y} & \omega_{x} & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Finally, the increment 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a\oplus\xi=ae^{\xihat}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 corresponds to an incremental rotation 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R\oplus\omega=Re^{\Skew{\omega}}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Derivatives
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								We can generalize Definition 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "def:differentiable"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to map exponential coordinates 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to increments 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, such that the linear map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Df_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 locally approximates a function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 from 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f(ae^{\xihat})\approx f(a)+f'(a)\xi
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Definition
							 | 
						||
| 
								 | 
							
								We define a function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:G\rightarrow\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to be 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								differentiable
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a\in G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 if there exists a matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)\in\Reals{m\times n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 such that
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\lim_{\xi\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f(ae^{\hat{\xi}})\right|}{\left|\xi\right|}=0
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								If 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is differentiable, then the matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is called the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								Jacobian matrix
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and the linear map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is called the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								derivative
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Note that the vectors 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 can be viewed as lying in the tangent space to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, but defining this rigorously would take us on a longer tour of differential
							 | 
						||
| 
								 | 
							
								 geometry.
							 | 
						||
| 
								 | 
							
								 Informally, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is simply the direction, in a local coordinate frame, that is locally tangent
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to a geodesic curve 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\gamma:t\mapsto ae^{\widehat{t\xi}}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 traced out by the exponential map, with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\gamma(0)=a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Derivative of an Action
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "sec:Derivatives-of-Actions"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The (usual) action of an 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-dimensional matrix group 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is matrix-vector multiplication on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\mathbb{R}^{n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, i.e., 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:G\times\Reals n\rightarrow\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f(T,p)=Tp
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Since this is a function defined on the product 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G\times\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 the derivative is a linear transformation 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Df:\Multi{2n}n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								Df_{(T,p)}\left(\xi,\delta p\right)=D_{1}f_{(T,p)}\left(\xi\right)+D_{2}f_{(T,p)}\left(\delta p\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "th:Action"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The Jacobian matrix of the group action
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(T,P)=Tp$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(T,p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								F_{(T,p)}=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								TH(p) & T\end{array}\right]=T\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								H(p) & I_{n}\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H:\Reals n\rightarrow\Reals{n\times n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 a linear mapping that depends on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $I_{n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n\times n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 identity matrix.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								First, the derivative 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D_{2}f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with respect to in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is easy, as its matrix is simply T:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f(T,p+\delta p)=T(p+\delta p)=Tp+T\delta p=f(T,p)+D_{2}f(\delta p)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								For the derivative 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D_{1}f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with respect to a change in the first argument 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we want
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\strikeout off
							 | 
						||
| 
								 | 
							
								\uuline off
							 | 
						||
| 
								 | 
							
								\uwave off
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f(Te^{\hat{\xi}},p)=Te^{\hat{\xi}}p\approx Tp+D_{1}f(\xi)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family default
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								\shape default
							 | 
						||
| 
								 | 
							
								\size default
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								\bar default
							 | 
						||
| 
								 | 
							
								\strikeout default
							 | 
						||
| 
								 | 
							
								\uuline default
							 | 
						||
| 
								 | 
							
								\uwave default
							 | 
						||
| 
								 | 
							
								\noun default
							 | 
						||
| 
								 | 
							
								\color inherit
							 | 
						||
| 
								 | 
							
								Since the matrix exponential is given by the series 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have, to first order
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								Te^{\hat{\xi}}p\approx T(I+\hat{\xi})p=Tp+T\hat{\xi}p
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Note Note
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								Note also that
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								T\hat{\xi}p=\left(T\hat{\xi}T^{-1}\right)Tp=\left(\Ad T\xihat\right)\left(Tp\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Hence, we need to show that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\xihat p=H(p)\xi\label{eq:Hp}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 an 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n\times n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 matrix that depends on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Expressing the map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi\rightarrow\hat{\xi}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 in terms of the Lie algebra generators 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G^{i}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, using tensors and Einstein summation, we have 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\hat{\xi}_{j}^{i}=G_{jk}^{i}\xi^{k}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 allowing us to calculate 
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\hat{\xi}p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family default
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								\shape default
							 | 
						||
| 
								 | 
							
								\size default
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								\bar default
							 | 
						||
| 
								 | 
							
								\noun default
							 | 
						||
| 
								 | 
							
								\color inherit
							 | 
						||
| 
								 | 
							
								 as
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\left(\hat{\xi}p\right)^{i}=\hat{\xi}_{j}^{i}p^{j}=G_{jk}^{i}\xi^{k}p^{j}=\left(G_{jk}^{i}p^{j}\right)\xi^{k}=H_{k}^{i}(p)\xi^{k}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								For 3D rotations 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R\in\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we have 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\hat{\omega}=\Skew{\omega}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								G_{k=1}:\left(\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & 0 & 0\\
							 | 
						||
| 
								 | 
							
								0 & 0 & -1\\
							 | 
						||
| 
								 | 
							
								0 & 1 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right)\mbox{}G_{k=2}:\left(\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & 0 & 1\\
							 | 
						||
| 
								 | 
							
								0 & 0 & 0\\
							 | 
						||
| 
								 | 
							
								-1 & 0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right)\mbox{ }G_{k=3}:\left(\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & -1 & 0\\
							 | 
						||
| 
								 | 
							
								1 & 0 & 0\\
							 | 
						||
| 
								 | 
							
								0 & 0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								The matrices 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\left(G_{k}^{i}\right)_{j}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 are obtained by assembling the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $j^{th}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 columns of the generators above, yielding 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 equal to:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\left(\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & 0 & 0\\
							 | 
						||
| 
								 | 
							
								0 & 0 & 1\\
							 | 
						||
| 
								 | 
							
								0 & -1 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right)p^{1}+\left(\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & 0 & -1\\
							 | 
						||
| 
								 | 
							
								0 & 0 & 0\\
							 | 
						||
| 
								 | 
							
								1 & 0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right)p^{2}+\left(\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & 1 & 0\\
							 | 
						||
| 
								 | 
							
								-1 & 0 & 0\\
							 | 
						||
| 
								 | 
							
								0 & 0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right)p^{3}=\left(\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & p^{3} & -p^{2}\\
							 | 
						||
| 
								 | 
							
								-p^{3} & 0 & p^{1}\\
							 | 
						||
| 
								 | 
							
								p^{2} & -p^{1} & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right)=\Skew{-p}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family default
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								\shape default
							 | 
						||
| 
								 | 
							
								\size default
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								\bar default
							 | 
						||
| 
								 | 
							
								\noun default
							 | 
						||
| 
								 | 
							
								\color inherit
							 | 
						||
| 
								 | 
							
								Hence, the Jacobian matrix of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(R,p)=Rp$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								F_{(R,p)}=R\left(\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{-p} & I_{3}\end{array}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Derivative of an Inverse Action
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Applying the action by the inverse of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T\in G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 yields a function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g:G\times\Reals n\rightarrow\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 defined by 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								g(T,p)=T^{-1}p
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "Th:InverseAction"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The Jacobian matrix of the inverse group action 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g(T,p)=T^{-1}p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								G_{(T,p)}=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								-H(T^{-1}p) & T^{-1}\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H:\Reals n\rightarrow\Reals{n\times n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the same mapping as before.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								Again, the derivative 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D_{2}g$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with respect to in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is easy, the matrix of which is simply 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T^{-1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								g(T,p+\delta p)=T^{-1}(p+\delta p)=T^{-1}p+T^{-1}\delta p=g(T,p)+D_{2}g(\delta p)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Conversely, a change in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 yields
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								g(Te^{\xihat},p)=\left(Te^{\xihat}\right)^{-1}p=e^{-\xihat}T^{-1}p
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Similar to before, if we expand the matrix exponential we get
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								e^{-A}=I-A+\frac{A^{2}}{2!}-\frac{A^{3}}{3!}+\ldots
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								so
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								e^{-\xihat}T^{-1}p\approx(I-\xihat)T^{-1}p=g(T,p)-\xihat\left(T^{-1}p\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								For 3D rotations 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R\in\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R^{-1}=R^{T}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)=-\Skew p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and hence the Jacobian matrix of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g(R,p)=R^{T}p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								G_{(R,p)}=\left(\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{R^{T}p} & R^{T}\end{array}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Note Note
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								My earlier attempt: because the wedge operator is linear, we have
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								f(\xi+x) & = & \exp\widehat{\left(\xi+x\right)}\\
							 | 
						||
| 
								 | 
							
								 & = & \exp\left(\xihat+\hat{x}\right)
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								However, except for commutative Lie groups, it is not true that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\exp\left(\xihat+\hat{x}\right)=\exp\xihat\exp\hat{x}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 However, if we expand the matrix exponential to second order and assume
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $x\rightarrow0$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we do have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\exp\left(\xihat+\hat{x}\right)\approx I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Now, if we ask what 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\hat{y}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 would effect the same change:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								\exp\xihat\exp\yhat & = & I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat\\
							 | 
						||
| 
								 | 
							
								\exp\xihat(I+\yhat) & = & I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat\\
							 | 
						||
| 
								 | 
							
								\left(\exp\xihat\right)\yhat & = & \xhat+\xhat\xihat
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								Instantaneous Velocity
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								For matrix Lie groups, if we have a matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{b}^{n}(t)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 that depends on a parameter 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $t$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, i.e., 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{b}^{n}(t)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 follows a curve on the manifold, then it would be of interest to find the
							 | 
						||
| 
								 | 
							
								 velocity of a point 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $q^{n}(t)=T_{b}^{n}(t)p^{b}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 acted upon by 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{b}^{n}(t)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 We can express the velocity of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $q(t)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 in both the n-frame and b-frame: 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\dot{q}^{n}=\dot{T}_{b}^{n}p^{b}=\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}p^{n}\mbox{\,\,\,\,\ and\,\,\,\,}\dot{q}^{b}=\left(T_{b}^{n}\right)^{-1}\dot{q}^{n}=\left(T_{b}^{n}\right)^{-1}\dot{T}_{b}^{n}p^{b}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Both the matrices 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xihat_{nb}^{n}\define\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xihat_{nb}^{b}\define\left(T_{b}^{n}\right)^{-1}\dot{T}_{b}^{n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 are skew-symmetric Lie algebra elements that describe the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								instantaneous velocity 
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								after "page 51 for rotations, page 419 for SE(3)"
							 | 
						||
| 
								 | 
							
								key "Murray94book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 We will revisit this for both rotations and rigid 3D transformations.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								Differentials: Smooth Mapping between Lie Groups
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Motivation and Definition
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The above shows how to compute the derivative of a function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:G\rightarrow\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 However, what if the argument to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is itself the result of a mapping between Lie groups? In other words, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f=g\circ\varphi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g:G\rightarrow\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi:H\rightarrow G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is a smooth mapping from the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-dimensional Lie group 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-dimensional Lie group 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 In this case, one would expect that we can arrive at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Df_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 by composing linear maps, as follows:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f'(a)=(g\circ\varphi)'(a)=G_{\varphi(a)}\varphi'(a)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is an 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n\times p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 matrix that is the best linear approximation to the map 
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\strikeout off
							 | 
						||
| 
								 | 
							
								\uuline off
							 | 
						||
| 
								 | 
							
								\uwave off
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi:H\rightarrow G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 The corresponding linear map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D\varphi_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is called the 
							 | 
						||
| 
								 | 
							
								\family default
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								\shape default
							 | 
						||
| 
								 | 
							
								\size default
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								\bar default
							 | 
						||
| 
								 | 
							
								\strikeout default
							 | 
						||
| 
								 | 
							
								\uuline default
							 | 
						||
| 
								 | 
							
								\uwave default
							 | 
						||
| 
								 | 
							
								\noun default
							 | 
						||
| 
								 | 
							
								\color inherit
							 | 
						||
| 
								 | 
							
								differential
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\strikeout off
							 | 
						||
| 
								 | 
							
								\uuline off
							 | 
						||
| 
								 | 
							
								\uwave off
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\family default
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								\shape default
							 | 
						||
| 
								 | 
							
								\size default
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								\bar default
							 | 
						||
| 
								 | 
							
								\strikeout default
							 | 
						||
| 
								 | 
							
								\uuline default
							 | 
						||
| 
								 | 
							
								\uwave default
							 | 
						||
| 
								 | 
							
								\noun default
							 | 
						||
| 
								 | 
							
								\color inherit
							 | 
						||
| 
								 | 
							
								or 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								pushforward
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\strikeout off
							 | 
						||
| 
								 | 
							
								\uuline off
							 | 
						||
| 
								 | 
							
								\uwave off
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $ $
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								the mapping 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\strikeout off
							 | 
						||
| 
								 | 
							
								\uuline off
							 | 
						||
| 
								 | 
							
								\uwave off
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								Because a rigorous definition will lead us too far astray, here we only
							 | 
						||
| 
								 | 
							
								 informally define the pushforward of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as the linear map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D\varphi_{a}:\Multi np$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 such that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D\varphi_{a}\left(\xi\right)\define\varphi'(a)\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and
							 | 
						||
| 
								 | 
							
								\family default
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								\shape default
							 | 
						||
| 
								 | 
							
								\size default
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								\bar default
							 | 
						||
| 
								 | 
							
								\strikeout default
							 | 
						||
| 
								 | 
							
								\uuline default
							 | 
						||
| 
								 | 
							
								\uwave default
							 | 
						||
| 
								 | 
							
								\noun default
							 | 
						||
| 
								 | 
							
								\color inherit
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\varphi\left(ae^{\xihat}\right)\approx\varphi\left(a\right)\exp\left(\widehat{\varphi'(a)\xi}\right)\label{eq:pushforward}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								with equality for 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi\rightarrow0$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 We call 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								Jacobian matrix
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of the map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Below we show that even with this informal definition we can deduce the
							 | 
						||
| 
								 | 
							
								 pushforward in a number of useful cases.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Left Multiplication with a Constant
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								Suppose 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is an 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-dimensional Lie group, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi:G\rightarrow G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is defined as 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(g)=hg$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $h\in G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 a constant.
							 | 
						||
| 
								 | 
							
								 Then 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D\varphi_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the identity mapping and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\varphi'(a)=I_{n}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								Defining 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $y=D\varphi_{a}x$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as in 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:pushforward"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								\varphi(a)e^{\yhat} & = & \varphi(ae^{\xhat})\\
							 | 
						||
| 
								 | 
							
								hae^{\yhat} & = & hae^{\xhat}\\
							 | 
						||
| 
								 | 
							
								y & = & x
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Pushforward of the Inverse Mapping
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								A well known property of Lie groups is the the fact that applying an incremental
							 | 
						||
| 
								 | 
							
								 change 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xihat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 in a different frame 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 can be applied in a single step by applying the change 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Ad_{g}\xihat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 in the original frame, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								ge^{\xihat}g^{-1}=\exp\left(Ad_{g}\xihat\right)\label{eq:Adjoint2}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Ad_{g}:\mathfrak{g}\rightarrow\mathfrak{g}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								adjoint representation
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 This comes in handy in the following:
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								Suppose that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi:G\rightarrow G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is defined as the mapping from an element 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to its 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								inverse
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g^{-1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, i.e., 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(g)=g^{-1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then the pushforward 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D\varphi_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 satisfies
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{align}
							 | 
						||
| 
								 | 
							
								\left(D\varphi_{a}x\right)\hat{} & =-Ad_{a}\xhat\label{eq:Dinverse}
							 | 
						||
| 
								 | 
							
								\end{align}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset ERT
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\backslash
							 | 
						||
| 
								 | 
							
								noindent
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 In other words, and this is intuitive in hindsight, approximating the inverse
							 | 
						||
| 
								 | 
							
								 is accomplished by negation of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xihat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, along with an adjoint to make sure it is applied in the right frame.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset ERT
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\backslash
							 | 
						||
| 
								 | 
							
								noindent
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 Note, however, that 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:Dinverse"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 does not immediately yield a useful expression for the Jacobian matrix
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, but in many important cases this will turn out to be easy.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								Defining 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $y=D\varphi_{a}x$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as in 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:pushforward"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								\varphi(a)e^{\yhat} & = & \varphi(ae^{\xhat})\\
							 | 
						||
| 
								 | 
							
								a^{-1}e^{\yhat} & = & \left(ae^{\xhat}\right)^{-1}\\
							 | 
						||
| 
								 | 
							
								e^{\yhat} & = & -ae^{\xhat}a^{-1}\\
							 | 
						||
| 
								 | 
							
								\yhat & = & -\Ad a\xhat
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								For 3D rotations 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R\in\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								Ad_{g}(\hat{\omega})=R\hat{\omega}R^{T}=\Skew{R\omega}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and hence the pushforward for the inverse mapping 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(R)=R^{T}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 has the matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi'(R)=-R$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Right Multiplication with a Constant
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								Suppose 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi:G\rightarrow G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is defined as 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(g)=gh$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $h\in G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 a constant.
							 | 
						||
| 
								 | 
							
								 Then 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D\varphi_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 satisfies
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\left(D\varphi_{a}x\right)\hat{}=\Ad{h^{-1}}\xhat
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								Defining 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $y=D\varphi_{a}x$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as in 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:pushforward"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{align*}
							 | 
						||
| 
								 | 
							
								\varphi(a)e^{\yhat} & =\varphi(ae^{\xhat})\\
							 | 
						||
| 
								 | 
							
								ahe & =ae^{\xhat}h\\
							 | 
						||
| 
								 | 
							
								e^{\yhat} & =h^{-1}e^{\xhat}h=\exp\left(\Ad{h^{-1}}\xhat\right)\\
							 | 
						||
| 
								 | 
							
								\yhat & =\Ad{h^{-1}}\xhat
							 | 
						||
| 
								 | 
							
								\end{align*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								In the case of 3D rotations, right multiplication with a constant rotation
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is done through the mapping 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(A)=AR$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and satisfies
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Skew{D\varphi_{A}x}=\Ad{R^{T}}\Skew x
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								For 3D rotations 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R\in\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								Ad_{R^{T}}(\hat{\omega})=R^{T}\hat{\omega}R=\Skew{R^{T}\omega}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and hence the Jacobian matrix of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $A$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi'(A)=R^{T}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Pushforward of Compose
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								If we define the mapping 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi:G\times G\rightarrow G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as the product of two group elements 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g,h\in G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, i.e., 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(g,h)=gh$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then the pushforward will satisfy
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								D\varphi_{(a,b)}(x,y)=D_{1}\varphi_{(a,b)}x+D_{2}\varphi_{(a,b)}y
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								with
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\left(D_{1}\varphi_{(a,b)}x\right)\hat{}=\Ad{b^{-1}}\xhat\mbox{\;\ and\;}D_{2}\varphi_{(a,b)}y=y
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								Looking at the first argument, the proof is very similar to right multiplication
							 | 
						||
| 
								 | 
							
								 with a constant 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $b$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Indeed, defining 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $y=D\varphi_{a}x$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as in 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:pushforward"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{align}
							 | 
						||
| 
								 | 
							
								\varphi(a,b)e^{\yhat} & =\varphi(ae^{\xhat},b)\nonumber \\
							 | 
						||
| 
								 | 
							
								abe^{\yhat} & =ae^{\xhat}b\nonumber \\
							 | 
						||
| 
								 | 
							
								e^{\yhat} & =b^{-1}e^{\xhat}b=\exp\left(\Ad{b^{-1}}\xhat\right)\nonumber \\
							 | 
						||
| 
								 | 
							
								\yhat & =\Ad{b^{-1}}\xhat\label{eq:Dcompose1}
							 | 
						||
| 
								 | 
							
								\end{align}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								In other words, to apply an incremental change 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xhat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we first need to undo 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $b$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then apply 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xhat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and then apply 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $b$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 again.
							 | 
						||
| 
								 | 
							
								 Using 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:Adjoint2"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 this can be done in one step by simply applying 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Ad{b^{-1}}\xhat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								The second argument is quite a bit easier and simply yields the identity
							 | 
						||
| 
								 | 
							
								 mapping:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{align}
							 | 
						||
| 
								 | 
							
								\varphi(a,b)e^{\yhat} & =\varphi(a,be^{\xhat})\nonumber \\
							 | 
						||
| 
								 | 
							
								abe^{\yhat} & =abe^{\xhat}\nonumber \\
							 | 
						||
| 
								 | 
							
								y & =x\label{eq:Dcompose2}
							 | 
						||
| 
								 | 
							
								\end{align}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Note Note
							 | 
						||
| 
								 | 
							
								status open
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								In summary, the Jacobian matrix of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(g,h)=gh$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(a,b)\in G\times G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\varphi'(a,b)=?
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								For 3D rotations 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $A,B\in\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(A,B)=AB$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Ad{B^{T}}\Skew{\omega}=\Skew{B^{T}\omega}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, hence the Jacobian matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi'(A,B)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 of composing two rotations is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\varphi'(A,B)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								B^{T} & I_{3}\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Pushforward of Between
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Finally, let us find the pushforward of 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								between
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								, defined as 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(g,h)=g^{-1}h$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 For the first argument we reason as:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{align}
							 | 
						||
| 
								 | 
							
								\varphi(g,h)e^{\yhat} & =\varphi(ge^{\xhat},h)\nonumber \\
							 | 
						||
| 
								 | 
							
								g^{-1}he^{\yhat} & =\left(ge^{\xhat}\right)^{-1}h=-e^{\xhat}g^{-1}h\nonumber \\
							 | 
						||
| 
								 | 
							
								e^{\yhat} & =-\left(h^{-1}g\right)e^{\xhat}\left(h^{-1}g\right)^{-1}=-\exp\Ad{\left(h^{-1}g\right)}\xhat\nonumber \\
							 | 
						||
| 
								 | 
							
								\yhat & =-\Ad{\left(h^{-1}g\right)}\xhat=-\Ad{\varphi\left(h,g\right)}\xhat\label{eq:Dbetween1}
							 | 
						||
| 
								 | 
							
								\end{align}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The second argument yields the identity mapping.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								For 3D rotations 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $A,B\in\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi(A,B)=A^{T}B$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Ad{B^{T}A}\Skew{-\omega}=\Skew{-B^{T}A\omega}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, hence the Jacobian matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi'(A,B)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 of between is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\varphi'(A,B)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\left(-B^{T}A\right) & I_{3}\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Numerical PushForward
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Let's examine
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f\left(g\right)e^{\yhat}=f\left(ge^{\xhat}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and multiply with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(g)^{-1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 on both sides:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								e^{\yhat}=f\left(g\right)^{-1}f\left(ge^{\xhat}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We then take the log (which in our case returns 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $y$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, not 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\yhat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								):
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								y(x)=\log\left[f\left(g\right)^{-1}f\left(ge^{\xhat}\right)\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Let us look at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $x=0$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and perturb in direction 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $i$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $e_{i}=[0,0,1,0,0]$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Then take derivative, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{y(d)}d\define\lim_{d\rightarrow0}\frac{y(d)-y(0)}{d}=\lim_{d\rightarrow0}\frac{1}{d}\log\left[f\left(g\right)^{-1}f\left(ge^{\widehat{de_{i}}}\right)\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								which is the basis for a numerical derivative scheme.
							 | 
						||
| 
								 | 
							
								\begin_inset Note Note
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								Not understood yet: Let us also look at a chain rule.
							 | 
						||
| 
								 | 
							
								 If we know the behavior at the origin 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $I$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we can extrapolate
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f(ge^{\xhat})=f(ge^{\xhat}g^{-1}g)=f(e^{\Ad g\xhat}g)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Derivative of the Exponential and Logarithm Map
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Theorem
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "D-exp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The derivative of the function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\Reals n\rightarrow G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 that applies the wedge operator followed by the exponential map, i.e., 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(\xi)=\exp\xihat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, is the identity map for 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi=0$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Proof
							 | 
						||
| 
								 | 
							
								For 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi=0$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								f(\xi)e^{\yhat} & = & f(\xi+x)\\
							 | 
						||
| 
								 | 
							
								f(0)e^{\yhat} & = & f(0+x)\\
							 | 
						||
| 
								 | 
							
								e^{\yhat} & = & e^{\xhat}
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Corollary
							 | 
						||
| 
								 | 
							
								The derivative of the inverse 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f^{-1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the identity as well, i.e., for 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T=e$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, the identity element in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								For 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi\neq0$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, things are not simple, see .
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Flex URL
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								http://deltaepsilons.wordpress.com/2009/11/06/helgasons-formula-for-the-differenti
							 | 
						||
| 
								 | 
							
								al-of-the-exponential/
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Newpage pagebreak
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								General Manifolds
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Retractions
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset FormulaMacro
							 | 
						||
| 
								 | 
							
								\newcommand{\retract}{\mathcal{R}}
							 | 
						||
| 
								 | 
							
								{\mathcal{R}}
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								General manifolds that are not Lie groups do not have an exponential map,
							 | 
						||
| 
								 | 
							
								 but can still be handled by defining a 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								retraction
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\retract:\Man\times\Reals n\rightarrow\Man$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, such that
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								a\oplus\xi\define\retract_{a}\left(\xi\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A retraction 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								key "Absil07book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is required to be tangent to geodesics on the manifold 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Man$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 We can define many retractions for a manifold 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Man$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, even for those with more structure.
							 | 
						||
| 
								 | 
							
								 For the vector space 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 the retraction is just vector addition, and for Lie groups the obvious
							 | 
						||
| 
								 | 
							
								 retraction is simply the exponential map, i.e., 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\retract_{a}(\xi)=a\cdot\exp\xihat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 However, one can choose other, possibly computationally attractive retractions,
							 | 
						||
| 
								 | 
							
								 as long as around a they agree with the geodesic induced by the exponential
							 | 
						||
| 
								 | 
							
								 map, i.e.,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\lim_{\xi\rightarrow0}\frac{\left|a\cdot\exp\xihat-\retract_{a}\left(\xi\right)\right|}{\left|\xi\right|}=0
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								For 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SEthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, instead of using the true exponential map it is computationally more efficient
							 | 
						||
| 
								 | 
							
								 to define the retraction, which uses a first order approximation of the
							 | 
						||
| 
								 | 
							
								 translation update
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\retract_{T}\left(\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\omega\\
							 | 
						||
| 
								 | 
							
								v
							 | 
						||
| 
								 | 
							
								\end{array}\right]\right)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								e^{\Skew{\omega}} & v\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								Re^{\Skew{\omega}} & t+Rv\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Derivatives
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Equipped with a retraction, then, we can generalize the notion of a derivative
							 | 
						||
| 
								 | 
							
								 for functions 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 from general a manifold 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Man$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Definition
							 | 
						||
| 
								 | 
							
								We define a function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\Man\rightarrow\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to be 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								differentiable
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a\in\Man$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 if there exists a matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 such that
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\lim_{\xi\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f\left(\retract_{a}(\xi)\right)\right|}{\left|\xi\right|}=0
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi\in\Reals n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 for an 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								-dimensional manifold, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\retract_{a}:\Reals n\rightarrow\Man$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 a retraction 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\retract$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 If 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is differentiable, then 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is called the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								Jacobian matrix
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and the linear transformation 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is called the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								derivative
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Definition
							 | 
						||
| 
								 | 
							
								For manifolds that are also Lie groups, the derivative of any function 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:G\rightarrow\Reals m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 will agree no matter what retraction 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\retract$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is used.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Newpage pagebreak
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Part
							 | 
						||
| 
								 | 
							
								Practice
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Below we apply the results derived in the theory part to the geometric objects
							 | 
						||
| 
								 | 
							
								 we use in GTSAM.
							 | 
						||
| 
								 | 
							
								 Above we preferred the modern notation 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D_{1}f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 for the partial derivative.
							 | 
						||
| 
								 | 
							
								 Below (because this was written earlier) we use the more classical notation
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{f(x,y)}x
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								In addition, for Lie groups we will abuse the notation and take
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\at{\deriv{\varphi(g)}{\xi}}a
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								to be the Jacobian matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi'($
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								a) of the mapping 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\varphi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a\in G$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, associated with the pushforward 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $D\varphi_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								SLAM Example
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Let us examine a visual SLAM example.
							 | 
						||
| 
								 | 
							
								 We have 2D measurements 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $z_{ij}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, where each measurement is predicted by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								z_{ij}=h(T_{i},p_{j})=\pi(T_{i}^{-1}p_{j})
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{i}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the 3D pose of the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $i^{th}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 camera, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p_{j}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the location of the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $j^{th}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 point, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the camera projection function from Example 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "ex:projection"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								BetweenFactor
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								BetweenFactor is often used to summarize 
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Theorem 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "D-exp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 about the derivative of the exponential map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\xi\mapsto\exp\xihat$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 being identity only at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi=0$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 has implications for GTSAM.
							 | 
						||
| 
								 | 
							
								 Given two elements 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{2}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, BetweenFactor evaluates
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								g(T_{1},T_{2};Z)=f^{-1}\left(\mathop{between}(Z,\mathop{between}(T_{1},T_{2})\right)=f^{-1}\left(Z^{-1}\left(T_{1}^{-1}T_{2}\right)\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								but because it is assumed that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Z\approx T_{1}^{-1}T_{2}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and hence we have 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Z^{-1}T_{1}^{-1}T_{2}\approx e$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and the derivative should be good there.
							 | 
						||
| 
								 | 
							
								 Note that the derivative of 
							 | 
						||
| 
								 | 
							
								\emph on
							 | 
						||
| 
								 | 
							
								between
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								 is identity in its second argument.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								Point3
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								A cross product 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a\times b$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 can be written as a matrix multiplication
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								a\times b=\Skew ab
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Skew a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is a skew-symmetric matrix defined as
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Skew{x,y,z}=\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & -z & y\\
							 | 
						||
| 
								 | 
							
								z & 0 & -x\\
							 | 
						||
| 
								 | 
							
								-y & x & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We also have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								a^{T}\Skew b=-(\Skew ba)^{T}=-(a\times b)^{T}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The derivative of a cross product 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{\partial(a\times b)}{\partial a}=\Skew{-b}\label{eq:Dcross1}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{\partial(a\times b)}{\partial b}=\Skew a\label{eq:Dcross2}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Newpage pagebreak
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								2D Rotations
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Rot2 in GTSAM
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								A rotation is stored as 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(\cos\theta,\sin\theta)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 An incremental rotation is applied using the trigonometric sum rule:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\cos\theta'=\cos\theta\cos\delta-\sin\theta\sin\delta
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\sin\theta'=\sin\theta\cos\delta+\cos\theta\sin\delta
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\delta$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is an incremental rotation angle.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Derivatives of Actions
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								In the case of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SOtwo$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 the vector space is 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Rtwo$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and the group action 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(R,p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 corresponds to rotating the 2D point 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f(R,p)=Rp
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								According to Theorem 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "th:Action"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, the Jacobian matrix of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f'(R,p)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								RH(p) & R\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H:\Reals 2\rightarrow\Reals{2\times2}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 a linear mapping that depends on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 In the case of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SOtwo$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we can find 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 by equating (as in Equation 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "eq:Hp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								):
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\skew wp=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								0 & -\omega\\
							 | 
						||
| 
								 | 
							
								\omega & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								x\\
							 | 
						||
| 
								 | 
							
								y
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								-y\\
							 | 
						||
| 
								 | 
							
								x
							 | 
						||
| 
								 | 
							
								\end{array}\right]\omega=H(p)\omega
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Note that 
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\strikeout off
							 | 
						||
| 
								 | 
							
								\uuline off
							 | 
						||
| 
								 | 
							
								\uwave off
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								H(p)=\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								-y\\
							 | 
						||
| 
								 | 
							
								x
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								0 & -1\\
							 | 
						||
| 
								 | 
							
								1 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								x\\
							 | 
						||
| 
								 | 
							
								y
							 | 
						||
| 
								 | 
							
								\end{array}\right]=R_{\pi/2}p
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and since 2D rotations commute, we also have, with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $q=Rp$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family default
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								\shape default
							 | 
						||
| 
								 | 
							
								\size default
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								\bar default
							 | 
						||
| 
								 | 
							
								\strikeout default
							 | 
						||
| 
								 | 
							
								\uuline default
							 | 
						||
| 
								 | 
							
								\uwave default
							 | 
						||
| 
								 | 
							
								\noun default
							 | 
						||
| 
								 | 
							
								\color inherit
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f'(R,p)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R\left(R_{\pi/2}p\right) & R\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R_{\pi/2}q & R\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Pushforwards of Mappings
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Since 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Ad R\skew{\omega}=\skew{\omega}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we have the derivative of 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								inverse
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial R^{T}}{\partial\omega}=-\Ad R=-1\mbox{ }
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								compose,
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=\Ad{R_{2}^{T}}=1\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=1
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								between:
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{1}}=-\Ad{R_{2}^{T}R_{1}}=-1\mbox{ and }\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{2}}=1
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Newpage pagebreak
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								2D Rigid Transformations
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								The derivatives of Actions
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The action of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SEtwo$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 on 2D points is done by embedding the points in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\mathbb{R}^{3}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 by using homogeneous coordinates
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								f(T,p)=\hat{q}=\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								q\\
							 | 
						||
| 
								 | 
							
								1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								p\\
							 | 
						||
| 
								 | 
							
								1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=T\hat{p}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								To find the derivative, we write the quantity 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xihat\hat{p}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as the product of the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $3\times3$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								: 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\xihat\hat{p}=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\skew{\omega} & v\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								p\\
							 | 
						||
| 
								 | 
							
								1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\skew{\omega}p+v\\
							 | 
						||
| 
								 | 
							
								0
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								I_{2} & R_{\pi/2}p\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								v\\
							 | 
						||
| 
								 | 
							
								\omega
							 | 
						||
| 
								 | 
							
								\end{array}\right]=H(p)\xi\label{eq:HpSE2}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Hence, by Theorem 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "th:Action"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\deriv{\left(T\hat{p}\right)}{\xi}=TH(p)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								I_{2} & R_{\pi/2}p\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & RR_{\pi/2}p\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & R_{\pi/2}q\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\label{eq:SE2Action}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Note that, looking only at the top rows of 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:HpSE2"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:SE2Action"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we can recognize the quantity 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\skew{\omega}p+v=v+\omega\left(R_{\pi/2}p\right)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as the velocity of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Rtwo$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & R_{\pi/2}q\end{array}\right]$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the derivative of the action on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Rtwo$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The derivative of the inverse action 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g(T,p)=T^{-1}\hat{p}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by Theorem 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "Th:InverseAction"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 specialized to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SEtwo$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-H(T^{-1}p)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								-I_{2} & -R_{\pi/2}\left(T^{-1}p\right)\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Pushforwards of Mappings
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								We can just define all derivatives in terms of the adjoint map, which in
							 | 
						||
| 
								 | 
							
								 the case of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SEtwo$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, in twist coordinates, is the linear mapping
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Ad T\xi=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & -R_{\pi/2}t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								v\\
							 | 
						||
| 
								 | 
							
								\omega
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and we have 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								\frac{\partial T^{^{-1}}}{\partial\xi} & = & -\Ad T
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}} & = & \Ad{T_{2}^{^{-1}}}\mbox{ and }\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{3}
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{1}} & = & -\Ad{T_{2}^{^{-1}}T_{1}}=-\Ad{between(T_{2},T_{1})}\mbox{ and }\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{2}}=I_{3}
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Newpage pagebreak
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								3D Rotations
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Derivatives of Actions
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								In the case of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 the vector space is  
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Rthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and the group action 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f(R,p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 corresponds to rotating a point
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								q=f(R,p)=Rp
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								To calculate 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 for use in Theorem 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "th:Action"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we make use of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								so 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)\define\Skew{-p}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Hence, the final derivative of an action in its first argument is
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{\left(Rp\right)}{\omega}=RH(p)=-R\Skew p
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Likewise, according to Theorem 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "Th:InverseAction"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, the derivative of the inverse action is given by
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{\left(R^{T}p\right)}{\omega}=-H(R^{T}p)=\Skew{R^{T}p}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset label
							 | 
						||
| 
								 | 
							
								LatexCommand label
							 | 
						||
| 
								 | 
							
								name "sub:3DAngularVelocities"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Instantaneous Velocity
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								For 3D rotations 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R_{b}^{n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 from a body frame 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $b$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to a navigation frame 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have the spatial angular velocity 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\omega_{nb}^{n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 measured in the navigation frame,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Skew{\omega_{nb}^{n}}\define\dot{R}_{b}^{n}\left(R_{b}^{n}\right)^{T}=\dot{R}_{b}^{n}R_{n}^{b}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and the body angular velocity 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\omega_{nb}^{b}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 measured in the body frame:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Skew{\omega_{nb}^{b}}\define\left(R_{b}^{n}\right)^{T}\dot{R}_{b}^{n}=R_{n}^{b}\dot{R}_{b}^{n}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								These quantities can be used to derive the velocity of a point 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, and we choose between spatial or body angular velocity depending on the
							 | 
						||
| 
								 | 
							
								 frame in which we choose to represent 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								v^{n}=\Skew{\omega_{nb}^{n}}p^{n}=\omega_{nb}^{n}\times p^{n}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								v^{b}=\Skew{\omega_{nb}^{b}}p^{b}=\omega_{nb}^{b}\times p^{b}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We can transform these skew-symmetric matrices from navigation to body frame
							 | 
						||
| 
								 | 
							
								 by conjugating, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Skew{\omega_{nb}^{b}}=R_{n}^{b}\Skew{\omega_{nb}^{n}}R_{b}^{n}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								but because the adjoint representation satisfies
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								Ad_{R}\Skew{\omega}\define R\Skew{\omega}R^{T}=\Skew{R\omega}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								we can even more easily transform between spatial and body angular velocities
							 | 
						||
| 
								 | 
							
								 as 3-vectors:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\omega_{nb}^{b}=R_{n}^{b}\omega_{nb}^{n}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Pushforwards of Mappings
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								For 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Ad R\Skew{\omega}=\Skew{R\omega}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and, in terms of angular velocities: 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Ad R\omega=R\omega$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 Hence, the Jacobian matrix of the 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								inverse
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 mapping is (see Equation 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "eq:Dinverse"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								) 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial R^{T}}{\partial\omega}=-\Ad R=-R
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								for 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								compose
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 we have (Equations 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "eq:Dcompose1"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "eq:Dcompose2"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								): 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=R_{2}^{T}\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								between
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 (Equation 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "eq:Dbetween1"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								):
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{1}}=-R_{2}^{T}R_{1}=-between(R_{2},R_{1})\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Retractions
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Absil 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								after "page 58"
							 | 
						||
| 
								 | 
							
								key "Absil07book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 discusses two possible retractions for 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 based on the QR decomposition or the polar decomposition of the matrix
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R\Skew{\omega}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, but they are expensive.
							 | 
						||
| 
								 | 
							
								 Another retraction is based on the Cayley transform 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\mathcal{C}:\sothree\rightarrow\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, a mapping from the skew-symmetric matrices to rotation matrices:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								Q=\mathcal{C}(\Omega)=(I-\Omega)(I+\Omega)^{-1}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Interestingly, the inverse Cayley transform 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\mathcal{C}^{-1}:\SOthree\rightarrow\sothree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 has the same form:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Omega=\mathcal{C}^{-1}(Q)=(I-Q)(I+Q)^{-1}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The retraction needs a factor 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $-\frac{1}{2}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 however, to make it locally align with a geodesic: 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								R'=\retract_{R}(\omega)=R\mathcal{C}(-\frac{1}{2}\Skew{\omega})
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Note that given 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\omega=(x,y,z)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 this has the closed-form expression below
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{1}{4+x^{2}+y^{2}+z^{2}}\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								4+x^{2}-y^{2}-z^{2} & 2xy-4z & 2xz+4y\\
							 | 
						||
| 
								 | 
							
								2xy+4z & 4-x^{2}+y^{2}-z^{2} & 2yz-4x\\
							 | 
						||
| 
								 | 
							
								2xz-4y & 2yz+4x & 4-x^{2}-y^{2}+z^{2}
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								=\frac{1}{4+x^{2}+y^{2}+z^{2}}\left\{ 4(I+\Skew{\omega})+\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								x^{2}-y^{2}-z^{2} & 2xy & 2xz\\
							 | 
						||
| 
								 | 
							
								2xy & -x^{2}+y^{2}-z^{2} & 2yz\\
							 | 
						||
| 
								 | 
							
								2xz & 2yz & -x^{2}-y^{2}+z^{2}
							 | 
						||
| 
								 | 
							
								\end{array}\right]\right\} 
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								so it can be seen to be a second-order correction on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(I+\Skew{\omega})$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 The corresponding approximation to the logarithmic map is:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Skew{\omega}=\retract_{R}^{-1}(R')=-2\mathcal{C}^{-1}\left(R^{T}R'\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								3D Rigid Transformations
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								The derivatives of Actions
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The action of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SEthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 on 3D points is done by embedding the points in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\mathbb{R}^{4}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 by using homogeneous coordinates
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\hat{q}=\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								q\\
							 | 
						||
| 
								 | 
							
								1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=f(T,p)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								p\\
							 | 
						||
| 
								 | 
							
								1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=T\hat{p}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The quantity 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xihat\hat{p}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 corresponds to a velocity in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\mathbb{R}^{4}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 (in the local 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 frame), and equating it to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)\xi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as in Equation 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "eq:Hp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 yields the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $4\times6$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Foot
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $H(p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 can also be obtained by taking the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $j^{th}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 column of each of the 6 generators to multiply with components of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\hat{p}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								: 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\xihat\hat{p}=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{\omega} & v\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								p\\
							 | 
						||
| 
								 | 
							
								1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\omega\times p+v\\
							 | 
						||
| 
								 | 
							
								0
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{-p} & I_{3}\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\omega\\
							 | 
						||
| 
								 | 
							
								v
							 | 
						||
| 
								 | 
							
								\end{array}\right]=H(p)\xi
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Note how velocities are analogous to points at infinity in projective geometry:
							 | 
						||
| 
								 | 
							
								 they correspond to free vectors indicating a direction and magnitude of
							 | 
						||
| 
								 | 
							
								 change.
							 | 
						||
| 
								 | 
							
								 According to Theorem 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "th:Action"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, the derivative of the group action is then 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{\left(T\hat{p}\right)}{\xi}=TH(p)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{-p} & I_{3}\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R\Skew{-p} & R\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{\left(T\hat{p}\right)}{\hat{p}}=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								in homogenous coordinates.
							 | 
						||
| 
								 | 
							
								 In 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Rthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 this becomes 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								-\Skew p & I_{3}\end{array}\right]$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The derivative of the inverse action 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T^{-1}p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by Theorem 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "Th:InverseAction"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\family roman
							 | 
						||
| 
								 | 
							
								\series medium
							 | 
						||
| 
								 | 
							
								\shape up
							 | 
						||
| 
								 | 
							
								\size normal
							 | 
						||
| 
								 | 
							
								\emph off
							 | 
						||
| 
								 | 
							
								\bar no
							 | 
						||
| 
								 | 
							
								\noun off
							 | 
						||
| 
								 | 
							
								\color none
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-H\left(T^{-1}\hat{p}\right)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{T^{-1}\hat{p}} & -I_{3}\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{\left(T^{-1}\hat{p}\right)}{\hat{p}}=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R^{T} & -R^{T}t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Example
							 | 
						||
| 
								 | 
							
								Let us examine a visual SLAM example.
							 | 
						||
| 
								 | 
							
								 We have 2D measurements 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $z_{ij}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, where each measurement is predicted by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								z_{ij}=h(T_{i},p_{j})=\pi(T_{i}^{-1}p_{j})=\pi(q)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{i}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the 3D pose of the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $i^{th}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 camera, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p_{j}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the location of the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $j^{th}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 point, 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $q=(x',y',z')=T^{-1}p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the point in camera coordinates, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the camera projection function from Example 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand ref
							 | 
						||
| 
								 | 
							
								reference "ex:projection"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 By the chain rule, we then have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{h(T,p)}{\xi}=\deriv{\pi(q)}q\deriv{(T^{-1}p)}{\xi}=\frac{1}{z'}\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								1 & 0 & -x'/z'\\
							 | 
						||
| 
								 | 
							
								0 & 1 & -y'/z'
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew q & -I_{3}\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\pi'(q)\Skew q & -\pi'(q)\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\deriv{h(T,p)}p=\pi'(q)R^{T}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Instantaneous Velocity
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								For rigid 3D transformations 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{b}^{n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 from a body frame 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $b$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to a navigation frame 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we have the instantaneous spatial twist 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi_{nb}^{n}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 measured in the navigation frame,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\hat{\xi}_{nb}^{n}\define\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and the instantaneous body twist 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\xi_{nb}^{b}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 measured in the body frame:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\hat{\xi}_{nb}^{b}\define\left(T_{b}^{n}\right)^{T}\dot{T}_{b}^{n}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Pushforwards of Mappings
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								As we can express the Adjoint representation in terms of twist coordinates,
							 | 
						||
| 
								 | 
							
								 we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\omega'\\
							 | 
						||
| 
								 | 
							
								v'
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & 0\\
							 | 
						||
| 
								 | 
							
								\Skew tR & R
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\omega\\
							 | 
						||
| 
								 | 
							
								v
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Hence, as with 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we are now in a position to simply posit the derivative of 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								inverse
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial T^{-1}}{\partial\xi}=\Ad T=-\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & 0\\
							 | 
						||
| 
								 | 
							
								\Skew tR & R
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								compose
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 in its first argument,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{2}^{-1}}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 in its second argument,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{6}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								between
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 in its first argument,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{2}^{^{-1}}T_{1}}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and in its second argument,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								\frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}} & = & I_{6}
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection
							 | 
						||
| 
								 | 
							
								Retractions
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								For 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SEthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, instead of using the true exponential map it is computationally more efficient
							 | 
						||
| 
								 | 
							
								 to design other retractions.
							 | 
						||
| 
								 | 
							
								 A first-order approximation to the exponential map does not quite cut it,
							 | 
						||
| 
								 | 
							
								 as it yields a 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $4\times4$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 matrix which is not in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SEthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								: 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								T\exp\xihat & \approx & T(I+\xihat)\\
							 | 
						||
| 
								 | 
							
								 & = & T\left(I_{4}+\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{\omega} & v\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\right)\\
							 | 
						||
| 
								 | 
							
								 & = & \left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								I_{3}+\Skew{\omega} & v\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\\
							 | 
						||
| 
								 | 
							
								 & = & \left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R\left(I_{3}+\Skew{\omega}\right) & t+Rv\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								However, we can make it into a retraction by using any retraction defined
							 | 
						||
| 
								 | 
							
								 for 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\SOthree$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, including, as below, using the exponential map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $Re^{\Skew{\omega}}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\retract_{T}\left(\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\omega\\
							 | 
						||
| 
								 | 
							
								v
							 | 
						||
| 
								 | 
							
								\end{array}\right]\right)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								e^{\Skew{\omega}} & v\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								Re^{\Skew{\omega}} & t+Rv\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Similarly, for a second order approximation we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								T\exp\xihat & \approx & T(I+\xihat+\frac{\xihat^{2}}{2})\\
							 | 
						||
| 
								 | 
							
								 & = & T\left(I_{4}+\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{\omega} & v\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{\omega} & v\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								\Skew{\omega} & v\\
							 | 
						||
| 
								 | 
							
								0 & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]\right)\\
							 | 
						||
| 
								 | 
							
								 & = & \left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left(\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								I_{3}+\Skew{\omega}+\frac{1}{2}\Skew{\omega}^{2} & v+\frac{1}{2}\Skew{\omega}v\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\right)\\
							 | 
						||
| 
								 | 
							
								 & = & \left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R\left(I_{3}+\Skew{\omega}+\frac{1}{2}\Skew{\omega}^{2}\right) & t+R\left[v+\left(\omega\times v\right)/2\right]\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								inspiring the retraction
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\retract_{T}\left(\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\omega\\
							 | 
						||
| 
								 | 
							
								v
							 | 
						||
| 
								 | 
							
								\end{array}\right]\right)=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								R & t\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								e^{\Skew{\omega}} & v+\left(\omega\times v\right)/2\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]=\left[\begin{array}{cc}
							 | 
						||
| 
								 | 
							
								Re^{\Skew{\omega}} & t+R\left[v+\left(\omega\times v\right)/2\right]\\
							 | 
						||
| 
								 | 
							
								0 & 1
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Newpage pagebreak
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								2D Line Segments (Ocaml)
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The error between an infinite line 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(a,b,c)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and a 2D line segment 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $((x1,y1),(x2,y2))$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is defined in Line3.ml.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								Line3vd (Ocaml)
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								One representation of a line is through 2 vectors 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(v,d)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $v$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the direction and the vector 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $d$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 points from the orgin to the closest point on the line.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								In this representation, transforming a 3D line from a world coordinate frame
							 | 
						||
| 
								 | 
							
								 to a camera at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(R_{w}^{c},t^{w})$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is done by
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								v^{c}=R_{w}^{c}v^{w}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								d^{c}=R_{w}^{c}\left(d^{w}+(t^{w}v^{w})v^{w}-t^{w}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								Line3 (Ocaml)
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								For 3D lines, we use a parameterization due to C.J.
							 | 
						||
| 
								 | 
							
								 Taylor, using a rotation matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 2 scalars 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $b$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 The line direction 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $v$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is simply the Z-axis of the rotated frame, i.e., 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $v=R_{3}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, while the vector 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $d$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is given by 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $d=aR_{1}+bR_{2}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Now, we will 
							 | 
						||
| 
								 | 
							
								\emph on
							 | 
						||
| 
								 | 
							
								not
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								 use the incremental rotation scheme we used for rotations: because the
							 | 
						||
| 
								 | 
							
								 matrix R translates from the line coordinate frame to the world frame,
							 | 
						||
| 
								 | 
							
								 we need to apply the incremental rotation on the right-side:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								R'=R(I+\Omega)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Projecting a line to 2D can be done easily, as both 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $v$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $d$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 are also the 2D homogenous coordinates of two points on the projected line,
							 | 
						||
| 
								 | 
							
								 and hence we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								l & = & v\times d\\
							 | 
						||
| 
								 | 
							
								 & = & R_{3}\times\left(aR_{1}+bR_{2}\right)\\
							 | 
						||
| 
								 | 
							
								 & = & a\left(R_{3}\times R_{1}\right)+b\left(R_{3}\times R_{2}\right)\\
							 | 
						||
| 
								 | 
							
								 & = & aR_{2}-bR_{1}
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This can be written as a rotation of a point,
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								l=R\left(\begin{array}{c}
							 | 
						||
| 
								 | 
							
								-b\\
							 | 
						||
| 
								 | 
							
								a\\
							 | 
						||
| 
								 | 
							
								0
							 | 
						||
| 
								 | 
							
								\end{array}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								but because the incremental rotation is now done on the right, we need to
							 | 
						||
| 
								 | 
							
								 figure out the derivatives again:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{\partial(R(I+\Omega)x)}{\partial\omega}=\frac{\partial(R\Omega x)}{\partial\omega}=R\frac{\partial(\Omega x)}{\partial\omega}=R\Skew{-x}\label{eq:rotateRight}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and hence the derivative of the projection 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $l$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 with respect to the rotation matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								of the 3D line is 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{\partial(l)}{\partial\omega}=R\Skew{\left(\begin{array}{c}
							 | 
						||
| 
								 | 
							
								b\\
							 | 
						||
| 
								 | 
							
								-a\\
							 | 
						||
| 
								 | 
							
								0
							 | 
						||
| 
								 | 
							
								\end{array}\right)}=\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								aR_{3} & bR_{3} & -(aR_{1}+bR_{2})\end{array}\right]
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								or the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a,b$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 scalars:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial(l)}{\partial a}=R_{2}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial(l)}{\partial b}=-R_{1}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Transforming a 3D line 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(R,(a,b))$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 from a world coordinate frame to a camera frame 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $(R_{w}^{c},t^{w})$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is done by
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								R'=R_{w}^{c}R
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								a'=a-R_{1}^{T}t^{w}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								b'=b-R_{2}^{T}t^{w}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Again, we need to redo the derivatives, as R is incremented from the right.
							 | 
						||
| 
								 | 
							
								 The first argument is incremented from the left, but the result is incremented
							 | 
						||
| 
								 | 
							
								 on the right:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								R'(I+\Omega')=(AB)(I+\Omega') & = & (I+\Skew{S\omega})AB\\
							 | 
						||
| 
								 | 
							
								I+\Omega' & = & (AB)^{T}(I+\Skew{S\omega})(AB)\\
							 | 
						||
| 
								 | 
							
								\Omega' & = & R'^{T}\Skew{S\omega}R'\\
							 | 
						||
| 
								 | 
							
								\Omega' & = & \Skew{R'^{T}S\omega}\\
							 | 
						||
| 
								 | 
							
								\omega' & = & R'^{T}S\omega
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								For the second argument 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we now simply have:
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{eqnarray*}
							 | 
						||
| 
								 | 
							
								AB(I+\Omega') & = & AB(I+\Omega)\\
							 | 
						||
| 
								 | 
							
								\Omega' & = & \Omega\\
							 | 
						||
| 
								 | 
							
								\omega' & = & \omega
							 | 
						||
| 
								 | 
							
								\end{eqnarray*}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The scalar derivatives can be found by realizing that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\left(\begin{array}{c}
							 | 
						||
| 
								 | 
							
								a'\\
							 | 
						||
| 
								 | 
							
								b'\\
							 | 
						||
| 
								 | 
							
								...
							 | 
						||
| 
								 | 
							
								\end{array}\right)=\left(\begin{array}{c}
							 | 
						||
| 
								 | 
							
								a\\
							 | 
						||
| 
								 | 
							
								b\\
							 | 
						||
| 
								 | 
							
								0
							 | 
						||
| 
								 | 
							
								\end{array}\right)-R^{T}t^{w}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where we don't care about the third row.
							 | 
						||
| 
								 | 
							
								 Hence
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{\partial(\left(R(I+\Omega_{2})\right)^{T}t^{w})}{\partial\omega}=-\frac{\partial(\Omega_{2}R^{T}t^{w})}{\partial\omega}=-\Skew{R^{T}t^{w}}=\left[\begin{array}{ccc}
							 | 
						||
| 
								 | 
							
								0 & R_{3}^{T}t^{w} & -R_{2}^{T}t^{w}\\
							 | 
						||
| 
								 | 
							
								-R_{3}^{T}t^{w} & 0 & R_{1}^{T}t^{w}\\
							 | 
						||
| 
								 | 
							
								... & ... & 0
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								Aligning 3D Scans
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Below is the explanaition underlying Pose3.align, i.e.
							 | 
						||
| 
								 | 
							
								 aligning two point clouds using SVD.
							 | 
						||
| 
								 | 
							
								 Inspired but modified from CVOnline...
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\emph on
							 | 
						||
| 
								 | 
							
								Our
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								 model is
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								p^{c}=R\left(p^{w}-t\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								i.e., 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $R$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is from camera to world, and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $t$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the camera location in world coordinates.
							 | 
						||
| 
								 | 
							
								 The objective function is
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								\frac{1}{2}\sum\left(p^{c}-R(p^{w}-t)\right)^{2}=\frac{1}{2}\sum\left(p^{c}-Rp^{w}+Rt\right)^{2}=\frac{1}{2}\sum\left(p^{c}-Rp^{w}-t'\right)^{2}\label{eq:J}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $t'=-Rt$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the location of the origin in the camera frame.
							 | 
						||
| 
								 | 
							
								 Taking the derivative with respect to 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $t'$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and setting to zero we have
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\sum\left(p^{c}-Rp^{w}-t'\right)=0
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								or
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\begin{equation}
							 | 
						||
| 
								 | 
							
								t'=\frac{1}{n}\sum\left(p^{c}-Rp^{w}\right)=\bar{p}^{c}-R\bar{p}^{w}\label{eq:t}
							 | 
						||
| 
								 | 
							
								\end{equation}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								here 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\bar{p}^{c}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 and 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\bar{p}^{w}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 are the point cloud centroids.
							 | 
						||
| 
								 | 
							
								 Substituting back into 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:J"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, we get
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\frac{1}{2}\sum\left(p^{c}-R(p^{w}-t)\right)^{2}=\frac{1}{2}\sum\left(\left(p^{c}-\bar{p}^{c}\right)-R\left(p^{w}-\bar{p}^{w}\right)\right)^{2}=\frac{1}{2}\sum\left(\hat{p}^{c}-R\hat{p}^{w}\right)^{2}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Now, to minimize the above it suffices to maximize (see CVOnline) 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\mathop{trace}\left(R^{T}C\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								where 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $C=\sum\hat{p}^{c}\left(\hat{p}^{w}\right)^{T}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the correlation matrix.
							 | 
						||
| 
								 | 
							
								 Intuitively, the cloud of points is rotated to align with the principal
							 | 
						||
| 
								 | 
							
								 axes.
							 | 
						||
| 
								 | 
							
								 This can be achieved by SVD decomposition on 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $C$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								C=USV^{T}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								and setting 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								R=UV^{T}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Clearly, from 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset ref
							 | 
						||
| 
								 | 
							
								LatexCommand eqref
							 | 
						||
| 
								 | 
							
								reference "eq:t"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 we then also recover the optimal 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $t$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								t=\bar{p}^{w}-R^{T}\bar{p}^{c}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Section*
							 | 
						||
| 
								 | 
							
								Appendix
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection*
							 | 
						||
| 
								 | 
							
								Differentiation Rules
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								Spivak 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								key "Spivak65book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 also notes some multivariate derivative rules defined component-wise, but
							 | 
						||
| 
								 | 
							
								 they are not that useful in practice:
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Itemize
							 | 
						||
| 
								 | 
							
								Since 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f:\Multi nm$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is defined in terms of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $m$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 component functions 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f^{i}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is differentiable at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 iff each 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f^{i}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is, and the Jacobian matrix 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $F_{a}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $m\times n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 matrix whose 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $i^{th}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 row is 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\left(f^{i}\right)'(a)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								: 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								F_{a}\define f'(a)=\left[\begin{array}{c}
							 | 
						||
| 
								 | 
							
								\left(f^{1}\right)'(a)\\
							 | 
						||
| 
								 | 
							
								\vdots\\
							 | 
						||
| 
								 | 
							
								\left(f^{m}\right)'(a)
							 | 
						||
| 
								 | 
							
								\end{array}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Itemize
							 | 
						||
| 
								 | 
							
								Scalar differentiation rules: if 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $f,g:\OneD n$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 are differentiable at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $a$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								(f+g)'(a)=F_{a}+G_{a}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								(f\cdot g)'(a)=g(a)F_{a}+f(a)G_{a}
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								(f/g)'(a)=\frac{1}{g(a)^{2}}\left[g(a)F_{a}-f(a)G_{a}\right]
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection*
							 | 
						||
| 
								 | 
							
								Tangent Spaces and the Tangent Bundle
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The following is adapted from Appendix A in 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								key "Murray94book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								tangent space
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{p}M$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 of a manifold 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $M$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at a point 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p\in M$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the vector space of 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								tangent vectors
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								 The 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								tangent bundle
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $TM$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the set of all tangent vectors
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								TM\define\bigcup_{p\in M}T_{p}M
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								A 
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								vector field
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $X:M\rightarrow TM$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 assigns a single tangent vector 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $x\in T_{p}M$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to each point 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								If 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $F:M\rightarrow N$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is a smooth map from a manifold 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $M$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to a manifold 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $N$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then we can define the
							 | 
						||
| 
								 | 
							
								\series bold
							 | 
						||
| 
								 | 
							
								 tangent map
							 | 
						||
| 
								 | 
							
								\series default
							 | 
						||
| 
								 | 
							
								 of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $F$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 as the linear map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $F_{*p}:T_{p}M\rightarrow T_{F(p)}N$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 that maps tangent vectors in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{p}M$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $p$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 to tangent vectors in 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $T_{F(p)}N$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at the image 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $F(p)$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Subsection*
							 | 
						||
| 
								 | 
							
								Homomorphisms
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								The following 
							 | 
						||
| 
								 | 
							
								\emph on
							 | 
						||
| 
								 | 
							
								might be
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								 relevant 
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset citation
							 | 
						||
| 
								 | 
							
								LatexCommand cite
							 | 
						||
| 
								 | 
							
								after "page 45"
							 | 
						||
| 
								 | 
							
								key "Hall00book"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								: suppose that 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Phi:G\rightarrow H$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is a mapping (Lie group homomorphism).
							 | 
						||
| 
								 | 
							
								 Then there exists a unique linear map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\phi:\gg\rightarrow\mathfrak{h}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(e^{t\xhat}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								such that
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Enumerate
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Phi\left(e^{\xhat}\right)=e^{\phi\left(\xhat\right)}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Enumerate
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\phi\left(T\xhat T^{-1}\right)=\Phi(T)\phi(\xhat)\Phi(T^{-1})$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Enumerate
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\phi\left([\xhat,\yhat]\right)=\left[\phi(\xhat),\phi(\yhat)\right]$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								In other words, the map 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\phi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 is the derivative of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Phi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at the identity.
							 | 
						||
| 
								 | 
							
								 As an example, suppose 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Phi(g)=g^{-1}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then the corresponding derivative 
							 | 
						||
| 
								 | 
							
								\emph on
							 | 
						||
| 
								 | 
							
								at the identity 
							 | 
						||
| 
								 | 
							
								\emph default
							 | 
						||
| 
								 | 
							
								is
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\left(e^{t\xhat}\right)^{-1}=\lim_{t\rightarrow0}\frac{d}{dt}e^{-t\xhat}=-\xhat\lim_{t\rightarrow0}e^{-t\xhat}=-\xhat
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								In general it suffices to compute 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\phi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 for a basis of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\gg$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								.
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Note Note
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								Undercooked: What if we want the derivative of 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Phi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at some other element 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								? In other words, if we apply 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\Phi$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 at 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $g$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 incremented by some Lie algebra element 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $e^{\xhat}$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								, then we are looking for a 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula $\yhat\in\gg$
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 will yield the same result: 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Phi\left(g\right)\lim_{t\rightarrow0}\frac{d}{dt}e^{t\yhat}=\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(ge^{t\xhat}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\lim_{t\rightarrow0}\frac{d}{dt}e^{t\yhat}=\Phi\left(g\right)^{-1}\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(ge^{t\xhat}\right)
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset Note Note
							 | 
						||
| 
								 | 
							
								status collapsed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Plain Layout
							 | 
						||
| 
								 | 
							
								Let us define two mappings
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\Phi_{1}(A)=AB\mbox{ and }\Phi_{2}(B)=AB
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Then 
							 | 
						||
| 
								 | 
							
								\begin_inset Formula 
							 | 
						||
| 
								 | 
							
								\[
							 | 
						||
| 
								 | 
							
								\phi_{1}(\xhat)=\lim_{t\rightarrow0}\frac{d}{dt}\Phi_{1}\left(e^{t\xhat}B\right)=
							 | 
						||
| 
								 | 
							
								\]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\begin_layout Standard
							 | 
						||
| 
								 | 
							
								\begin_inset CommandInset bibtex
							 | 
						||
| 
								 | 
							
								LatexCommand bibtex
							 | 
						||
| 
								 | 
							
								bibfiles "/Users/dellaert/papers/refs"
							 | 
						||
| 
								 | 
							
								options "plain"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_inset
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_layout
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								\end_body
							 | 
						||
| 
								 | 
							
								\end_document
							 |