| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  *  @file   EquivInertialNavFactor_GlobalVel.h | 
					
						
							|  |  |  |  *  @author Vadim Indelman, Stephen Williams | 
					
						
							|  |  |  |  *  @brief  Equivalent inertial navigation factor (velocity in the global frame). | 
					
						
							|  |  |  |  *  @date   Sep. 26, 2012 | 
					
						
							|  |  |  |  **/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/NonlinearFactor.h>
 | 
					
						
							|  |  |  | #include <gtsam/linear/NoiseModel.h>
 | 
					
						
							|  |  |  | #include <gtsam/geometry/Rot3.h>
 | 
					
						
							|  |  |  | #include <gtsam/base/LieVector.h>
 | 
					
						
							|  |  |  | #include <gtsam/base/Matrix.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Using numerical derivative to calculate d(Pose3::Expmap)/dw
 | 
					
						
							|  |  |  | #include <gtsam/base/numericalDerivative.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <boost/optional.hpp>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <ostream>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * NOTES: | 
					
						
							|  |  |  |  * ===== | 
					
						
							|  |  |  |  * Concept: Based on [Lupton12tro] | 
					
						
							|  |  |  |  * - Pre-integrate IMU measurements using the static function PreIntegrateIMUObservations. | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |  *    Pre-integrated quantities are expressed in the body system of t0 - the first time instant (in which pre-integration began). | 
					
						
							|  |  |  |  *    All sensor-to-body transformations are performed here. | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  |  * - If required, calculate inertial solution by calling the static functions: predictPose_inertial, predictVelocity_inertial. | 
					
						
							|  |  |  |  * - When the time is right, incorporate pre-integrated IMU data by creating an EquivInertialNavFactor_GlobalVel factor, which will | 
					
						
							|  |  |  |  *   relate between navigation variables at the two time instances (t0 and current time). | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Other notes: | 
					
						
							|  |  |  |  * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame. | 
					
						
							|  |  |  |  * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames. | 
					
						
							|  |  |  |  * - Camera and IMU frames are identical | 
					
						
							|  |  |  |  * - The user should specify a continuous equivalent noise covariance, which can be calculated using | 
					
						
							|  |  |  |  *   the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance | 
					
						
							|  |  |  |  *   matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a | 
					
						
							|  |  |  |  *   discrete form using the supplied delta_t between sub-sequential measurements. | 
					
						
							|  |  |  |  * - Earth-rate correction: | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |  *     + Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global | 
					
						
							|  |  |  |  *       frame (Local-Level system: ENU or NED, see above). | 
					
						
							|  |  |  |  *     + R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system. | 
					
						
							|  |  |  |  *    + Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant. | 
					
						
							|  |  |  |  *      Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon. | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  |  * | 
					
						
							|  |  |  |  * - Frame Notation: | 
					
						
							|  |  |  |  *   Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame} | 
					
						
							|  |  |  |  *   So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor | 
					
						
							|  |  |  |  *   And the transformation from the body frame to the world frame would be: world_P_body | 
					
						
							|  |  |  |  *   This allows visual chaining. For example, converting the sensed angular velocity of the IMU | 
					
						
							|  |  |  |  *   (angular velocity of the sensor in the sensor frame) into the world frame can be performed as: | 
					
						
							|  |  |  |  *       world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * - Common Quantity Types | 
					
						
							|  |  |  |  *   P : pose/3d transformation | 
					
						
							|  |  |  |  *   R : rotation | 
					
						
							|  |  |  |  *   omega : angular velocity | 
					
						
							|  |  |  |  *   t : translation | 
					
						
							|  |  |  |  *   v : velocity | 
					
						
							|  |  |  |  *   a : acceleration | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * - Common Frames | 
					
						
							|  |  |  |  *   sensor : the coordinate system attached to the sensor origin | 
					
						
							|  |  |  |  *   body   : the coordinate system attached to body/inertial frame. | 
					
						
							|  |  |  |  *            Unless an optional frame transformation is provided, the | 
					
						
							|  |  |  |  *            sensor frame and the body frame will be identical | 
					
						
							|  |  |  |  *   world  : the global/world coordinate frame. This is assumed to be | 
					
						
							|  |  |  |  *            a tangent plane to the earth's surface somewhere near the | 
					
						
							|  |  |  |  *            vehicle | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template<class POSE, class VELOCITY, class IMUBIAS> | 
					
						
							|  |  |  | class EquivInertialNavFactor_GlobalVel : public NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | private: | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   typedef EquivInertialNavFactor_GlobalVel<POSE, VELOCITY, IMUBIAS> This; | 
					
						
							|  |  |  |   typedef NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> Base; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   Vector delta_pos_in_t0_; | 
					
						
							|  |  |  |   Vector delta_vel_in_t0_; | 
					
						
							|  |  |  |   Vector3 delta_angles_; | 
					
						
							|  |  |  |   double dt12_; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   Vector world_g_; | 
					
						
							|  |  |  |   Vector world_rho_; | 
					
						
							|  |  |  |   Vector world_omega_earth_; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   Matrix Jacobian_wrt_t0_Overall_; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   boost::optional<IMUBIAS> Bias_initial_; // Bias used when pre-integrating IMU measurements
 | 
					
						
							|  |  |  |   boost::optional<POSE> body_P_sensor_;   // The pose of the sensor in the body frame
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   // shorthand for a smart pointer to a factor
 | 
					
						
							|  |  |  |   typedef typename boost::shared_ptr<EquivInertialNavFactor_GlobalVel> shared_ptr; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   /** default constructor - only use for serialization */ | 
					
						
							|  |  |  |   EquivInertialNavFactor_GlobalVel() {} | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   /** Constructor */ | 
					
						
							|  |  |  |   EquivInertialNavFactor_GlobalVel(const Key& Pose1, const Key& Vel1, const Key& IMUBias1, const Key& Pose2, const Key& Vel2, | 
					
						
							|  |  |  |       const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles, | 
					
						
							|  |  |  |       double dt12, const Vector world_g, const Vector world_rho, | 
					
						
							|  |  |  |       const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_equivalent, | 
					
						
							|  |  |  |       const Matrix& Jacobian_wrt_t0_Overall, | 
					
						
							|  |  |  |       boost::optional<IMUBIAS> Bias_initial = boost::none, boost::optional<POSE> body_P_sensor = boost::none) : | 
					
						
							|  |  |  |         Base(model_equivalent, Pose1, Vel1, IMUBias1, Pose2, Vel2), | 
					
						
							|  |  |  |         delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles), | 
					
						
							|  |  |  |         dt12_(dt12), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), Jacobian_wrt_t0_Overall_(Jacobian_wrt_t0_Overall), | 
					
						
							|  |  |  |         Bias_initial_(Bias_initial), body_P_sensor_(body_P_sensor) {  } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   virtual ~EquivInertialNavFactor_GlobalVel() {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /** implement functions needed for Testable */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /** print */ | 
					
						
							|  |  |  |   virtual void print(const std::string& s = "EquivInertialNavFactor_GlobalVel", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { | 
					
						
							|  |  |  |     std::cout << s << "(" | 
					
						
							|  |  |  |         << keyFormatter(this->key1()) << "," | 
					
						
							|  |  |  |         << keyFormatter(this->key2()) << "," | 
					
						
							|  |  |  |         << keyFormatter(this->key3()) << "," | 
					
						
							|  |  |  |         << keyFormatter(this->key4()) << "," | 
					
						
							|  |  |  |         << keyFormatter(this->key5()) << "\n"; | 
					
						
							|  |  |  |     std::cout << "delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl; | 
					
						
							|  |  |  |     std::cout << "delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl; | 
					
						
							|  |  |  |     std::cout << "delta_angles: " << this->delta_angles_ << std::endl; | 
					
						
							|  |  |  |     std::cout << "dt12: " << this->dt12_ << std::endl; | 
					
						
							|  |  |  |     std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl; | 
					
						
							|  |  |  |     std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl; | 
					
						
							|  |  |  |     std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl; | 
					
						
							|  |  |  |     if(this->body_P_sensor_) | 
					
						
							|  |  |  |       this->body_P_sensor_->print("  sensor pose in body frame: "); | 
					
						
							|  |  |  |     this->noiseModel_->print("  noise model"); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   /** equals */ | 
					
						
							|  |  |  |   virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const { | 
					
						
							|  |  |  |     const This *e =  dynamic_cast<const This*> (&expected); | 
					
						
							|  |  |  |     return e != NULL && Base::equals(*e, tol) | 
					
						
							|  |  |  |     && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol | 
					
						
							|  |  |  |     && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol | 
					
						
							|  |  |  |     && (delta_angles_ - e->delta_angles_).norm() < tol | 
					
						
							|  |  |  |     && (dt12_ - e->dt12_) < tol | 
					
						
							|  |  |  |     && (world_g_ - e->world_g_).norm() < tol | 
					
						
							|  |  |  |     && (world_rho_ - e->world_rho_).norm() < tol | 
					
						
							|  |  |  |     && (world_omega_earth_ - e->world_omega_earth_).norm() < tol | 
					
						
							|  |  |  |     && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const { | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     // Correct delta_pos_in_t0_ using (Bias1 - Bias_t0)
 | 
					
						
							|  |  |  |     Vector delta_BiasAcc  = Bias1.accelerometer(); | 
					
						
							|  |  |  |     Vector delta_BiasGyro = Bias1.gyroscope(); | 
					
						
							|  |  |  |     if (Bias_initial_){ | 
					
						
							|  |  |  |       delta_BiasAcc  -= Bias_initial_->accelerometer(); | 
					
						
							|  |  |  |       delta_BiasGyro -= Bias_initial_->gyroscope(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Matrix J_Pos_wrt_BiasAcc  = Jacobian_wrt_t0_Overall_.block(4,9,3,3); | 
					
						
							|  |  |  |     Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(4,12,3,3); | 
					
						
							|  |  |  |     Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(0,12,3,3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Position term */ | 
					
						
							|  |  |  |     Vector delta_pos_in_t0_corrected = delta_pos_in_t0_ + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     /* Rotation term */ | 
					
						
							|  |  |  |     Vector delta_angles_corrected = delta_angles_ + J_angles_wrt_BiasGyro*delta_BiasGyro; | 
					
						
							|  |  |  |     // Another alternative:
 | 
					
						
							|  |  |  |     //    Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return predictPose_inertial(Pose1, Vel1, | 
					
						
							|  |  |  |         delta_pos_in_t0_corrected, delta_angles_corrected, | 
					
						
							|  |  |  |           dt12_, world_g_, world_rho_, world_omega_earth_); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static inline POSE predictPose_inertial(const POSE& Pose1, const VELOCITY& Vel1, | 
					
						
							|  |  |  |       const Vector& delta_pos_in_t0, const Vector3& delta_angles, | 
					
						
							|  |  |  |       const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth){ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     const POSE& world_P1_body = Pose1; | 
					
						
							|  |  |  |     const VELOCITY& world_V1_body = Vel1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Position term */ | 
					
						
							|  |  |  |     Vector body_deltaPos_body = delta_pos_in_t0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body; | 
					
						
							|  |  |  |     Vector world_deltaPos_body     = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | 
					
						
							|  |  |  |     world_deltaPos_body -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* TODO: the term dt12*dt12 in 0.5*world_g*dt12*dt12 is not entirely correct:
 | 
					
						
							|  |  |  |      *  the gravity should be canceled from the accelerometer measurements, bust since position | 
					
						
							|  |  |  |      *  is added with a delta velocity from a previous term, the actual delta time is more complicated. | 
					
						
							|  |  |  |      *  Need to figure out this in the future - currently because of this issue we'll get some more error | 
					
						
							|  |  |  |      *  in Z axis. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Rotation term */ | 
					
						
							|  |  |  |     Vector body_deltaAngles_body = delta_angles; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Convert earth-related terms into the body frame
 | 
					
						
							|  |  |  |     Matrix body_R_world(world_P1_body.rotation().inverse().matrix()); | 
					
						
							|  |  |  |     Vector body_rho = body_R_world * world_rho; | 
					
						
							|  |  |  |     Vector body_omega_earth = body_R_world * world_omega_earth; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | 
					
						
							|  |  |  |     body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() + typename POSE::Translation(world_deltaPos_body)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Correct delta_vel_in_t0_ using (Bias1 - Bias_t0)
 | 
					
						
							|  |  |  |     Vector delta_BiasAcc  = Bias1.accelerometer(); | 
					
						
							|  |  |  |     Vector delta_BiasGyro = Bias1.gyroscope(); | 
					
						
							|  |  |  |     if (Bias_initial_){ | 
					
						
							|  |  |  |       delta_BiasAcc  -= Bias_initial_->accelerometer(); | 
					
						
							|  |  |  |       delta_BiasGyro -= Bias_initial_->gyroscope(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Matrix J_Vel_wrt_BiasAcc  = Jacobian_wrt_t0_Overall_.block(6,9,3,3); | 
					
						
							|  |  |  |     Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(6,12,3,3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Vector delta_vel_in_t0_corrected = delta_vel_in_t0_ + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return predictVelocity_inertial(Pose1, Vel1, | 
					
						
							|  |  |  |         delta_vel_in_t0_corrected, | 
					
						
							|  |  |  |           dt12_, world_g_, world_rho_, world_omega_earth_); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   static inline VELOCITY predictVelocity_inertial(const POSE& Pose1, const VELOCITY& Vel1, | 
					
						
							|  |  |  |       const Vector& delta_vel_in_t0, | 
					
						
							|  |  |  |       const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth) { | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     const POSE& world_P1_body = Pose1; | 
					
						
							|  |  |  |       const VELOCITY& world_V1_body = Vel1; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |       Vector body_deltaVel_body = delta_vel_in_t0; | 
					
						
							|  |  |  |       Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 ); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | 
					
						
							|  |  |  |     VelDelta -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Predict
 | 
					
						
							|  |  |  |     return Vel1.compose( VelDelta ); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   void predict(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2) const { | 
					
						
							|  |  |  |     Pose2 = predictPose(Pose1, Vel1, Bias1); | 
					
						
							|  |  |  |     Vel2  = predictVelocity(Pose1, Vel1, Bias1); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const { | 
					
						
							|  |  |  |     // Predict
 | 
					
						
							|  |  |  |     POSE Pose2Pred = predictPose(Pose1, Vel1, Bias1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Luca: difference between Pose2 and Pose2Pred
 | 
					
						
							|  |  |  |     POSE DiffPose( Pose2.rotation().between(Pose2Pred.rotation()),  Pose2Pred.translation() - Pose2.translation() ); | 
					
						
							|  |  |  | //    DiffPose = Pose2.between(Pose2Pred);
 | 
					
						
							|  |  |  |     return DiffPose; | 
					
						
							|  |  |  |     // Calculate error
 | 
					
						
							|  |  |  |     //return Pose2.between(Pose2Pred);
 | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const { | 
					
						
							|  |  |  |     // Predict
 | 
					
						
							|  |  |  |     VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1, Bias1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Calculate error
 | 
					
						
							|  |  |  |     return Vel2.between(Vel2Pred); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2, | 
					
						
							|  |  |  |       boost::optional<Matrix&> H1 = boost::none, | 
					
						
							|  |  |  |       boost::optional<Matrix&> H2 = boost::none, | 
					
						
							|  |  |  |       boost::optional<Matrix&> H3 = boost::none, | 
					
						
							|  |  |  |       boost::optional<Matrix&> H4 = boost::none, | 
					
						
							|  |  |  |       boost::optional<Matrix&> H5 = boost::none) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // TODO: Write analytical derivative calculations
 | 
					
						
							|  |  |  |     // Jacobian w.r.t. Pose1
 | 
					
						
							|  |  |  |     if (H1){ | 
					
						
							|  |  |  |       Matrix H1_Pose = numericalDerivative11<POSE, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, _1, Vel1, Bias1, Pose2, Vel2), Pose1); | 
					
						
							|  |  |  |       Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, _1, Vel1, Bias1, Pose2, Vel2), Pose1); | 
					
						
							|  |  |  |       *H1 = stack(2, &H1_Pose, &H1_Vel); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Jacobian w.r.t. Vel1
 | 
					
						
							|  |  |  |     if (H2){ | 
					
						
							|  |  |  |       Matrix H2_Pose = numericalDerivative11<POSE, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, Pose1, _1, Bias1, Pose2, Vel2), Vel1); | 
					
						
							|  |  |  |       Matrix H2_Vel = numericalDerivative11<VELOCITY, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, Pose1, _1, Bias1, Pose2, Vel2), Vel1); | 
					
						
							|  |  |  |       *H2 = stack(2, &H2_Pose, &H2_Vel); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Jacobian w.r.t. IMUBias1
 | 
					
						
							|  |  |  |     if (H3){ | 
					
						
							|  |  |  |       Matrix H3_Pose = numericalDerivative11<POSE, IMUBIAS>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, Pose1, Vel1, _1, Pose2, Vel2), Bias1); | 
					
						
							|  |  |  |       Matrix H3_Vel = numericalDerivative11<VELOCITY, IMUBIAS>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, Pose1, Vel1, _1, Pose2, Vel2), Bias1); | 
					
						
							|  |  |  |       *H3 = stack(2, &H3_Pose, &H3_Vel); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Jacobian w.r.t. Pose2
 | 
					
						
							|  |  |  |     if (H4){ | 
					
						
							|  |  |  |       Matrix H4_Pose = numericalDerivative11<POSE, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, Pose1, Vel1, Bias1, _1, Vel2), Pose2); | 
					
						
							|  |  |  |       Matrix H4_Vel = numericalDerivative11<VELOCITY, POSE>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, Pose1, Vel1, Bias1, _1, Vel2), Pose2); | 
					
						
							|  |  |  |       *H4 = stack(2, &H4_Pose, &H4_Vel); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Jacobian w.r.t. Vel2
 | 
					
						
							|  |  |  |     if (H5){ | 
					
						
							|  |  |  |       Matrix H5_Pose = numericalDerivative11<POSE, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, Pose1, Vel1, Bias1, Pose2, _1), Vel2); | 
					
						
							|  |  |  |       Matrix H5_Vel = numericalDerivative11<VELOCITY, VELOCITY>(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, Pose1, Vel1, Bias1, Pose2, _1), Vel2); | 
					
						
							|  |  |  |       *H5 = stack(2, &H5_Pose, &H5_Vel); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Bias1, Pose2, Vel2))); | 
					
						
							|  |  |  |     Vector ErrVelVector(VELOCITY::Logmap(evaluateVelocityError(Pose1, Vel1, Bias1, Pose2, Vel2))); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return concatVectors(2, &ErrPoseVector, &ErrVelVector); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static inline POSE PredictPoseFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, | 
					
						
							|  |  |  |       const Vector& delta_pos_in_t0, const Vector3& delta_angles, | 
					
						
							|  |  |  |       double dt12, const Vector world_g, const Vector world_rho, | 
					
						
							|  |  |  |       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall, | 
					
						
							|  |  |  |       const boost::optional<IMUBIAS>& Bias_initial = boost::none) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Correct delta_pos_in_t0_ using (Bias1 - Bias_t0)
 | 
					
						
							| 
									
										
										
										
											2013-05-20 04:25:49 +08:00
										 |  |  |     Vector delta_BiasAcc  = Bias1.accelerometer(); | 
					
						
							|  |  |  |     Vector delta_BiasGyro = Bias1.gyroscope(); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  |     if (Bias_initial){ | 
					
						
							| 
									
										
										
										
											2013-05-20 04:25:49 +08:00
										 |  |  |       delta_BiasAcc  -= Bias_initial->accelerometer(); | 
					
						
							|  |  |  |       delta_BiasGyro -= Bias_initial->gyroscope(); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Matrix J_Pos_wrt_BiasAcc  = Jacobian_wrt_t0_Overall.block(4,9,3,3); | 
					
						
							|  |  |  |     Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(4,12,3,3); | 
					
						
							|  |  |  |     Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(0,12,3,3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Position term */ | 
					
						
							|  |  |  |     Vector delta_pos_in_t0_corrected = delta_pos_in_t0 + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* Rotation term */ | 
					
						
							|  |  |  |     Vector delta_angles_corrected = delta_angles + J_angles_wrt_BiasGyro*delta_BiasGyro; | 
					
						
							|  |  |  |     // Another alternative:
 | 
					
						
							|  |  |  |     //    Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static inline VELOCITY PredictVelocityFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, | 
					
						
							|  |  |  |       const Vector& delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho, | 
					
						
							|  |  |  |       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall, | 
					
						
							|  |  |  |       const boost::optional<IMUBIAS>& Bias_initial = boost::none) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Correct delta_vel_in_t0_ using (Bias1 - Bias_t0)
 | 
					
						
							| 
									
										
										
										
											2013-05-20 04:25:49 +08:00
										 |  |  |     Vector delta_BiasAcc  = Bias1.accelerometer(); | 
					
						
							|  |  |  |     Vector delta_BiasGyro = Bias1.gyroscope(); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  |     if (Bias_initial){ | 
					
						
							| 
									
										
										
										
											2013-05-20 04:25:49 +08:00
										 |  |  |       delta_BiasAcc  -= Bias_initial->accelerometer(); | 
					
						
							|  |  |  |       delta_BiasGyro -= Bias_initial->gyroscope(); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Matrix J_Vel_wrt_BiasAcc  = Jacobian_wrt_t0_Overall.block(6,9,3,3); | 
					
						
							|  |  |  |     Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(6,12,3,3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Vector delta_vel_in_t0_corrected = delta_vel_in_t0 + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static inline void PredictFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2, | 
					
						
							|  |  |  |       const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles, | 
					
						
							|  |  |  |       double dt12, const Vector world_g, const Vector world_rho, | 
					
						
							|  |  |  |       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall, | 
					
						
							|  |  |  |       const boost::optional<IMUBIAS>& Bias_initial = boost::none) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, Bias1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial); | 
					
						
							|  |  |  |     Vel2  = PredictVelocityFromPreIntegration(Pose1, Vel1, Bias1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static inline void PreIntegrateIMUObservations(const Vector& msr_acc_t, const Vector& msr_gyro_t, const double msr_dt, | 
					
						
							|  |  |  |       Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0, double& delta_t, | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |       const noiseModel::Gaussian::shared_ptr& model_continuous_overall, | 
					
						
							|  |  |  |       Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall, const IMUBIAS Bias_t0 = IMUBIAS(), | 
					
						
							|  |  |  |       boost::optional<POSE> p_body_P_sensor = boost::none){ | 
					
						
							|  |  |  |     // Note: all delta terms refer to an IMU\sensor system at t0
 | 
					
						
							|  |  |  |     // Note: Earth-related terms are not accounted here but are incorporated in predict functions.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     POSE body_P_sensor = POSE(); | 
					
						
							|  |  |  |     bool flag_use_body_P_sensor = false; | 
					
						
							|  |  |  |     if (p_body_P_sensor){ | 
					
						
							|  |  |  |       body_P_sensor = *p_body_P_sensor; | 
					
						
							|  |  |  |       flag_use_body_P_sensor = true; | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0); | 
					
						
							|  |  |  |     delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, Bias_t0); | 
					
						
							|  |  |  |     delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor, Bias_t0); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     delta_t += msr_dt; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     // Update EquivCov_Overall
 | 
					
						
							|  |  |  |     Matrix Z_3x3 = zeros(3,3); | 
					
						
							|  |  |  |     Matrix I_3x3 = eye(3,3); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     Matrix H_pos_pos = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, _1, delta_vel_in_t0), delta_pos_in_t0); | 
					
						
							|  |  |  |     Matrix H_pos_vel = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, delta_pos_in_t0, _1), delta_vel_in_t0); | 
					
						
							|  |  |  |     Matrix H_pos_angles = Z_3x3; | 
					
						
							|  |  |  |     Matrix H_pos_bias = collect(2, &Z_3x3, &Z_3x3); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     Matrix H_vel_vel = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, _1, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_vel_in_t0); | 
					
						
							|  |  |  |     Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, _1, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_angles); | 
					
						
							|  |  |  |     Matrix H_vel_bias = numericalDerivative11<LieVector, IMUBIAS>(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, _1), Bias_t0); | 
					
						
							|  |  |  |     Matrix H_vel_pos = Z_3x3; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, _1, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_angles); | 
					
						
							|  |  |  |     Matrix H_angles_bias = numericalDerivative11<LieVector, IMUBIAS>(boost::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor, _1), Bias_t0); | 
					
						
							|  |  |  |     Matrix H_angles_pos = Z_3x3; | 
					
						
							|  |  |  |     Matrix H_angles_vel = Z_3x3; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     Matrix F_angles = collect(4, &H_angles_angles, &H_angles_pos, &H_angles_vel, &H_angles_bias); | 
					
						
							|  |  |  |     Matrix F_pos    = collect(4, &H_pos_angles, &H_pos_pos, &H_pos_vel, &H_pos_bias); | 
					
						
							|  |  |  |     Matrix F_vel    = collect(4, &H_vel_angles, &H_vel_pos, &H_vel_vel, &H_vel_bias); | 
					
						
							|  |  |  |     Matrix F_bias_a = collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3, &Z_3x3); | 
					
						
							|  |  |  |     Matrix F_bias_g = collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3); | 
					
						
							|  |  |  |     Matrix F = stack(5, &F_angles, &F_pos, &F_vel, &F_bias_a, &F_bias_g); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-04 03:51:56 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt ); | 
					
						
							|  |  |  |     Matrix Q_d = inverse(model_discrete_curr->R().transpose() * model_discrete_curr->R() ); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d; | 
					
						
							|  |  |  |     // Luca: force identity covariance matrix (for testing purposes)
 | 
					
						
							|  |  |  |     // EquivCov_Overall = Matrix::Identity(15,15);
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     // Update Jacobian_wrt_t0_Overall
 | 
					
						
							|  |  |  |     Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall; | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   static inline Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt, | 
					
						
							|  |  |  |       const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0){ | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     // Note: all delta terms refer to an IMU\sensor system at t0
 | 
					
						
							|  |  |  |     // Note: delta_vel_in_t0 is already in body frame, so no need to use the body_P_sensor transformation here.
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt; | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt, | 
					
						
							|  |  |  |       const Vector3& delta_angles, const Vector& delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE& body_P_sensor, | 
					
						
							|  |  |  |       IMUBIAS Bias_t0 = IMUBIAS()){ | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     // Note: all delta terms refer to an IMU\sensor system at t0
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     // Calculate the corrected measurements using the Bias object
 | 
					
						
							|  |  |  |     Vector AccCorrected  = Bias_t0.correctAccelerometer(msr_acc_t); | 
					
						
							|  |  |  |     Vector body_t_a_body; | 
					
						
							|  |  |  |     if (flag_use_body_P_sensor){ | 
					
						
							|  |  |  |       Matrix body_R_sensor = body_P_sensor.rotation().matrix(); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |       Vector GyroCorrected(Bias_t0.correctGyroscope(msr_gyro_t)); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |       Vector body_omega_body = body_R_sensor * GyroCorrected; | 
					
						
							|  |  |  |       Matrix body_omega_body__cross = skewSymmetric(body_omega_body); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |       body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector(); | 
					
						
							|  |  |  |     } else{ | 
					
						
							|  |  |  |       body_t_a_body = AccCorrected; | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt; | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt, | 
					
						
							|  |  |  |       const Vector3& delta_angles, const bool flag_use_body_P_sensor, const POSE& body_P_sensor, | 
					
						
							|  |  |  |       IMUBIAS Bias_t0 = IMUBIAS()){ | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     // Note: all delta terms refer to an IMU\sensor system at t0
 | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     // Calculate the corrected measurements using the Bias object
 | 
					
						
							|  |  |  |     Vector GyroCorrected = Bias_t0.correctGyroscope(msr_gyro_t); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     Vector body_t_omega_body; | 
					
						
							|  |  |  |     if (flag_use_body_P_sensor){ | 
					
						
							|  |  |  |       body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected; | 
					
						
							|  |  |  |     } else { | 
					
						
							|  |  |  |       body_t_omega_body = GyroCorrected; | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     R_t_to_t0    = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt ); | 
					
						
							|  |  |  |     return Rot3::Logmap(R_t_to_t0); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro, | 
					
						
							|  |  |  |       const noiseModel::Gaussian::shared_ptr& gaussian_process){ | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     Matrix cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() ); | 
					
						
							|  |  |  |     Matrix cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() ); | 
					
						
							|  |  |  |     Matrix cov_process = inverse( gaussian_process->R().transpose() * gaussian_process->R() ); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     cov_process.block(0,0, 3,3) += cov_gyro; | 
					
						
							|  |  |  |     cov_process.block(6,6, 3,3) += cov_acc; | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     return noiseModel::Gaussian::Covariance(cov_process); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   static inline void CalcEquivalentNoiseCov_DifferentParts(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro, | 
					
						
							|  |  |  |       const noiseModel::Gaussian::shared_ptr& gaussian_process, | 
					
						
							|  |  |  |       Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() ); | 
					
						
							|  |  |  |     cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() ); | 
					
						
							|  |  |  |     cov_process_without_acc_gyro = inverse( gaussian_process->R().transpose() * gaussian_process->R() ); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial, | 
					
						
							|  |  |  |       Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-12-17 05:33:12 +08:00
										 |  |  |     Matrix ENU_to_NED = (Matrix(3, 3) << | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |         0.0,  1.0,  0.0, | 
					
						
							|  |  |  |         1.0,  0.0,  0.0, | 
					
						
							|  |  |  |         0.0,  0.0, -1.0); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-12-17 05:33:12 +08:00
										 |  |  |     Matrix NED_to_ENU = (Matrix(3, 3) << | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |         0.0,  1.0,  0.0, | 
					
						
							|  |  |  |         1.0,  0.0,  0.0, | 
					
						
							|  |  |  |         0.0,  0.0, -1.0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Convert incoming parameters to ENU
 | 
					
						
							|  |  |  |     Vector Pos_ENU = NED_to_ENU * Pos_NED; | 
					
						
							|  |  |  |     Vector Vel_ENU = NED_to_ENU * Vel_NED; | 
					
						
							|  |  |  |     Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Call ENU version
 | 
					
						
							|  |  |  |     Vector g_ENU; | 
					
						
							|  |  |  |     Vector rho_ENU; | 
					
						
							|  |  |  |     Vector omega_earth_ENU; | 
					
						
							|  |  |  |     Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Convert output to NED
 | 
					
						
							|  |  |  |     g_NED = ENU_to_NED * g_ENU; | 
					
						
							|  |  |  |     rho_NED = ENU_to_NED * rho_ENU; | 
					
						
							|  |  |  |     omega_earth_NED = ENU_to_NED * omega_earth_ENU; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial, | 
					
						
							|  |  |  |       Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){ | 
					
						
							|  |  |  |     double R0 = 6.378388e6; | 
					
						
							|  |  |  |     double e = 1/297; | 
					
						
							|  |  |  |     double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) ); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Calculate current lat, lon
 | 
					
						
							|  |  |  |     Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial); | 
					
						
							|  |  |  |     double delta_lat(delta_Pos_ENU(1)/Re); | 
					
						
							|  |  |  |     double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0)))); | 
					
						
							|  |  |  |     double lat_new(LatLonHeight_IC(0) + delta_lat); | 
					
						
							|  |  |  |     double lon_new(LatLonHeight_IC(1) + delta_lon); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Rotation of lon about z axis
 | 
					
						
							|  |  |  |     Rot3 C1(cos(lon_new), sin(lon_new), 0.0, | 
					
						
							|  |  |  |         -sin(lon_new), cos(lon_new), 0.0, | 
					
						
							|  |  |  |         0.0, 0.0, 1.0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Rotation of lat about y axis
 | 
					
						
							|  |  |  |     Rot3 C2(cos(lat_new), 0.0, sin(lat_new), | 
					
						
							|  |  |  |         0.0, 1.0, 0.0, | 
					
						
							|  |  |  |         -sin(lat_new), 0.0, cos(lat_new)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Rot3 UEN_to_ENU(0, 1, 0, | 
					
						
							|  |  |  |         0, 0, 1, | 
					
						
							|  |  |  |         1, 0, 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 ); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-12-17 05:33:12 +08:00
										 |  |  |     Vector omega_earth_ECEF((Vector(3) << 0.0, 0.0, 7.292115e-5)); | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |     omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Calculating g
 | 
					
						
							|  |  |  |     double height(LatLonHeight_IC(2)); | 
					
						
							|  |  |  |     double EQUA_RADIUS = 6378137.0;        // equatorial radius of the earth; WGS-84
 | 
					
						
							|  |  |  |     double ECCENTRICITY = 0.0818191908426;  // eccentricity of the earth ellipsoid
 | 
					
						
							|  |  |  |     double e2( pow(ECCENTRICITY,2) ); | 
					
						
							|  |  |  |     double den( 1-e2*pow(sin(lat_new),2) ); | 
					
						
							|  |  |  |     double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) ); | 
					
						
							|  |  |  |     double Rp( EQUA_RADIUS/( sqrt(den) ) ); | 
					
						
							|  |  |  |     double Ro( sqrt(Rp*Rm) );           // mean earth radius of curvature
 | 
					
						
							|  |  |  |     double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) ); | 
					
						
							|  |  |  |     double g_calc( g0/( pow(1 + height/Ro, 2) ) ); | 
					
						
							| 
									
										
										
										
											2013-12-17 05:33:12 +08:00
										 |  |  |     g_ENU = (Vector(3) << 0.0, 0.0, -g_calc); | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Calculate rho
 | 
					
						
							|  |  |  |     double Ve( Vel_ENU(0) ); | 
					
						
							|  |  |  |     double Vn( Vel_ENU(1) ); | 
					
						
							|  |  |  |     double rho_E = -Vn/(Rm + height); | 
					
						
							|  |  |  |     double rho_N = Ve/(Rp + height); | 
					
						
							|  |  |  |     double rho_U = Ve*tan(lat_new)/(Rp + height); | 
					
						
							| 
									
										
										
										
											2013-12-17 05:33:12 +08:00
										 |  |  |     rho_ENU = (Vector(3) << rho_E, rho_N, rho_U); | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){ | 
					
						
							|  |  |  |       /* Q_d (approx)= Q * delta_t */ | 
					
						
							|  |  |  |       /* In practice, square root of the information matrix is represented, so that:
 | 
					
						
							|  |  |  |        *  R_d (approx)= R / sqrt(delta_t) | 
					
						
							|  |  |  |        * */ | 
					
						
							|  |  |  |       return noiseModel::Gaussian::SqrtInformation(model->R()/sqrt(delta_t)); | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | private: | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-11 01:52:57 +08:00
										 |  |  |   /** Serialization function */ | 
					
						
							|  |  |  |   friend class boost::serialization::access; | 
					
						
							|  |  |  |   template<class ARCHIVE> | 
					
						
							|  |  |  |   void serialize(ARCHIVE & ar, const unsigned int version) { | 
					
						
							|  |  |  |     ar & boost::serialization::make_nvp("NonlinearFactor2", | 
					
						
							|  |  |  |         boost::serialization::base_object<Base>(*this)); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2013-02-20 05:24:44 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | }; // \class EquivInertialNavFactor_GlobalVel
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } /// namespace gtsam
 |