2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/**
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * @file   testSimulated3D.cpp
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * @brief  Unit tests for simulated 3D measurement functions
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * @author Alex Cunningham
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 **/
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <iostream>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <CppUnitLite/TestHarness.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include "Pose3.h"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include "numericalDerivative.h"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include "Simulated3D.h"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								using namespace gtsam;
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								using namespace simulated3D;
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/* ************************************************************************* */
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								TEST( simulated3D, Dprior )
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								{
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Pose3 x1(rodriguez(0, 0, 1.57), Point3(1, 5, 0));
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-08 08:40:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									Vector v = logmap(x1);
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									Matrix numerical = numericalDerivative11(prior,v);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Matrix computed = Dprior(v);
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									CHECK(assert_equal(numerical,computed,1e-9));
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/* ************************************************************************* */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								TEST( simulated3D, DOdo1 )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								{
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Pose3 x1(rodriguez(0, 0, 1.57), Point3(1, 5, 0));
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-08 08:40:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									Vector v1 = logmap(x1);
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Pose3 x2(rodriguez(0, 0, 0), Point3(2, 3, 0));
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-08 08:40:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									Vector v2 = logmap(x2);
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									Matrix numerical = numericalDerivative21(odo,v1,v2);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Matrix computed = Dodo1(v1,v2);
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									CHECK(assert_equal(numerical,computed,1e-9));
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/* ************************************************************************* */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								TEST( simulated3D, DOdo2 )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								{
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Pose3 x1(rodriguez(0, 0, 1.57), Point3(1, 5, 0));
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-08 08:40:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									Vector v1 = logmap(x1);
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Pose3 x2(rodriguez(0, 0, 0), Point3(2, 3, 0));
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-08 08:40:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									Vector v2 = logmap(x2);
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									Matrix numerical = numericalDerivative22(odo,v1,v2);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Matrix computed = Dodo2(v1,v2);
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									CHECK(assert_equal(numerical,computed,1e-9));
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/* ************************************************************************* */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/* ************************************************************************* */
							 |