cartographer/cartographer/mapping_3d/sparse_pose_graph/optimization_problem.cc

369 lines
15 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/mapping_3d/sparse_pose_graph/optimization_problem.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "Eigen/Core"
#include "cartographer/common/ceres_solver_options.h"
#include "cartographer/common/make_unique.h"
#include "cartographer/common/math.h"
#include "cartographer/common/time.h"
#include "cartographer/mapping_3d/acceleration_cost_function.h"
#include "cartographer/mapping_3d/ceres_pose.h"
#include "cartographer/mapping_3d/imu_integration.h"
#include "cartographer/mapping_3d/rotation_cost_function.h"
#include "cartographer/mapping_3d/rotation_parameterization.h"
#include "cartographer/mapping_3d/sparse_pose_graph/spa_cost_function.h"
#include "cartographer/transform/transform.h"
#include "ceres/ceres.h"
#include "ceres/jet.h"
#include "ceres/rotation.h"
#include "glog/logging.h"
namespace cartographer {
namespace mapping_3d {
namespace sparse_pose_graph {
OptimizationProblem::OptimizationProblem(
const mapping::sparse_pose_graph::proto::OptimizationProblemOptions&
options,
FixZ fix_z)
: options_(options), fix_z_(fix_z) {}
OptimizationProblem::~OptimizationProblem() {}
void OptimizationProblem::AddImuData(const int trajectory_id,
const sensor::ImuData& imu_data) {
CHECK_GE(trajectory_id, 0);
imu_data_.resize(
std::max(imu_data_.size(), static_cast<size_t>(trajectory_id) + 1));
imu_data_[trajectory_id].push_back(imu_data);
}
void OptimizationProblem::AddFixedFramePoseData(
const int trajectory_id,
const sensor::FixedFramePoseData& fixed_frame_pose_data) {
CHECK_GE(trajectory_id, 0);
fixed_frame_pose_data_.resize(std::max(
fixed_frame_pose_data_.size(), static_cast<size_t>(trajectory_id) + 1));
fixed_frame_pose_data_[trajectory_id].Push(fixed_frame_pose_data.time,
fixed_frame_pose_data.pose);
}
void OptimizationProblem::AddTrajectoryNode(
const int trajectory_id, const common::Time time,
const transform::Rigid3d& point_cloud_pose) {
CHECK_GE(trajectory_id, 0);
node_data_.resize(
std::max(node_data_.size(), static_cast<size_t>(trajectory_id) + 1));
node_data_[trajectory_id].push_back(NodeData{time, point_cloud_pose});
}
void OptimizationProblem::AddSubmap(const int trajectory_id,
const transform::Rigid3d& submap_pose) {
CHECK_GE(trajectory_id, 0);
submap_data_.resize(
std::max(submap_data_.size(), static_cast<size_t>(trajectory_id) + 1));
submap_data_[trajectory_id].push_back(SubmapData{submap_pose});
}
void OptimizationProblem::SetMaxNumIterations(const int32 max_num_iterations) {
options_.mutable_ceres_solver_options()->set_max_num_iterations(
max_num_iterations);
}
void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
const std::set<int>& frozen_trajectories) {
if (node_data_.empty()) {
// Nothing to optimize.
return;
}
ceres::Problem::Options problem_options;
ceres::Problem problem(problem_options);
const auto translation_parameterization =
[this]() -> std::unique_ptr<ceres::LocalParameterization> {
return fix_z_ == FixZ::kYes
? common::make_unique<ceres::SubsetParameterization>(
3, std::vector<int>{2})
: nullptr;
};
// Set the starting point.
CHECK(!submap_data_.empty());
CHECK(!submap_data_[0].empty());
// TODO(hrapp): Move ceres data into SubmapData.
std::vector<std::deque<CeresPose>> C_submaps(submap_data_.size());
std::vector<std::deque<CeresPose>> C_nodes(node_data_.size());
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
++trajectory_id) {
const bool frozen = frozen_trajectories.count(trajectory_id);
for (size_t submap_index = 0;
submap_index != submap_data_[trajectory_id].size(); ++submap_index) {
if (trajectory_id == 0 && submap_index == 0) {
// Tie the first submap of the first trajectory to the origin.
C_submaps[trajectory_id].emplace_back(
transform::Rigid3d::Identity(), translation_parameterization(),
common::make_unique<ceres::AutoDiffLocalParameterization<
ConstantYawQuaternionPlus, 4, 2>>(),
&problem);
problem.SetParameterBlockConstant(
C_submaps[trajectory_id].back().translation());
} else {
C_submaps[trajectory_id].emplace_back(
submap_data_[trajectory_id][submap_index].pose,
translation_parameterization(),
common::make_unique<ceres::QuaternionParameterization>(), &problem);
}
if (frozen) {
problem.SetParameterBlockConstant(
C_submaps[trajectory_id].back().rotation());
problem.SetParameterBlockConstant(
C_submaps[trajectory_id].back().translation());
}
}
}
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
++trajectory_id) {
const bool frozen = frozen_trajectories.count(trajectory_id);
for (size_t node_index = 0; node_index != node_data_[trajectory_id].size();
++node_index) {
C_nodes[trajectory_id].emplace_back(
node_data_[trajectory_id][node_index].point_cloud_pose,
translation_parameterization(),
common::make_unique<ceres::QuaternionParameterization>(), &problem);
if (frozen) {
problem.SetParameterBlockConstant(
C_nodes[trajectory_id].back().rotation());
problem.SetParameterBlockConstant(
C_nodes[trajectory_id].back().translation());
}
}
}
// Add cost functions for intra- and inter-submap constraints.
for (const Constraint& constraint : constraints) {
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>(
new SpaCostFunction(constraint.pose)),
// Only loop closure constraints should have a loss function.
constraint.tag == Constraint::INTER_SUBMAP
? new ceres::HuberLoss(options_.huber_scale())
: nullptr,
C_submaps.at(constraint.submap_id.trajectory_id)
.at(constraint.submap_id.submap_index)
.rotation(),
C_submaps.at(constraint.submap_id.trajectory_id)
.at(constraint.submap_id.submap_index)
.translation(),
C_nodes.at(constraint.node_id.trajectory_id)
.at(constraint.node_id.node_index)
.rotation(),
C_nodes.at(constraint.node_id.trajectory_id)
.at(constraint.node_id.node_index)
.translation());
}
// Add constraints based on IMU observations of angular velocities and
// linear acceleration.
trajectory_data_.resize(imu_data_.size());
CHECK_GE(trajectory_data_.size(), node_data_.size());
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
++trajectory_id) {
const auto& node_data = node_data_[trajectory_id];
if (node_data.empty()) {
// We skip empty trajectories which might not have any IMU data.
continue;
}
TrajectoryData& trajectory_data = trajectory_data_.at(trajectory_id);
problem.AddParameterBlock(trajectory_data.imu_calibration.data(), 4,
new ceres::QuaternionParameterization());
const std::deque<sensor::ImuData>& imu_data = imu_data_.at(trajectory_id);
CHECK(!imu_data.empty());
// Skip IMU data before the first node of this trajectory.
auto it = imu_data.cbegin();
while ((it + 1) != imu_data.cend() && (it + 1)->time <= node_data[0].time) {
++it;
}
for (size_t node_index = 1; node_index < node_data.size(); ++node_index) {
auto it2 = it;
const IntegrateImuResult<double> result =
IntegrateImu(imu_data, node_data[node_index - 1].time,
node_data[node_index].time, &it);
if (node_index + 1 < node_data.size()) {
const common::Time first_time = node_data[node_index - 1].time;
const common::Time second_time = node_data[node_index].time;
const common::Time third_time = node_data[node_index + 1].time;
const common::Duration first_duration = second_time - first_time;
const common::Duration second_duration = third_time - second_time;
const common::Time first_center = first_time + first_duration / 2;
const common::Time second_center = second_time + second_duration / 2;
const IntegrateImuResult<double> result_to_first_center =
IntegrateImu(imu_data, first_time, first_center, &it2);
const IntegrateImuResult<double> result_center_to_center =
IntegrateImu(imu_data, first_center, second_center, &it2);
// 'delta_velocity' is the change in velocity from the point in time
// halfway between the first and second poses to halfway between second
// and third pose. It is computed from IMU data and still contains a
// delta due to gravity. The orientation of this vector is in the IMU
// frame at the second pose.
const Eigen::Vector3d delta_velocity =
(result.delta_rotation.inverse() *
result_to_first_center.delta_rotation) *
result_center_to_center.delta_velocity;
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<AccelerationCostFunction, 3, 4, 3,
3, 3, 1, 4>(
new AccelerationCostFunction(
options_.acceleration_weight(), delta_velocity,
common::ToSeconds(first_duration),
common::ToSeconds(second_duration))),
nullptr, C_nodes[trajectory_id].at(node_index).rotation(),
C_nodes[trajectory_id].at(node_index - 1).translation(),
C_nodes[trajectory_id].at(node_index).translation(),
C_nodes[trajectory_id].at(node_index + 1).translation(),
&trajectory_data.gravity_constant,
trajectory_data.imu_calibration.data());
}
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4, 4>(
new RotationCostFunction(options_.rotation_weight(),
result.delta_rotation)),
nullptr, C_nodes[trajectory_id].at(node_index - 1).rotation(),
C_nodes[trajectory_id].at(node_index).rotation(),
trajectory_data.imu_calibration.data());
}
}
// Add fixed frame pose constraints.
std::deque<CeresPose> C_fixed_frames;
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
++trajectory_id) {
if (trajectory_id >= fixed_frame_pose_data_.size()) {
break;
}
bool fixed_frame_pose_initialized = false;
const auto& node_data = node_data_[trajectory_id];
for (size_t node_index = 0; node_index < node_data.size(); ++node_index) {
if (!fixed_frame_pose_data_.at(trajectory_id)
.Has(node_data[node_index].time)) {
continue;
}
const mapping::SparsePoseGraph::Constraint::Pose constraint_pose{
fixed_frame_pose_data_.at(trajectory_id)
.Lookup(node_data[node_index].time),
options_.fixed_frame_pose_translation_weight(),
options_.fixed_frame_pose_rotation_weight()};
if (!fixed_frame_pose_initialized) {
const transform::Rigid3d fixed_frame_pose_in_map =
node_data[node_index].point_cloud_pose *
constraint_pose.zbar_ij.inverse();
C_fixed_frames.emplace_back(
transform::Rigid3d(
fixed_frame_pose_in_map.translation(),
Eigen::AngleAxisd(
transform::GetYaw(fixed_frame_pose_in_map.rotation()),
Eigen::Vector3d::UnitZ())),
nullptr,
common::make_unique<ceres::AutoDiffLocalParameterization<
YawOnlyQuaternionPlus, 4, 1>>(),
&problem);
fixed_frame_pose_initialized = true;
}
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<SpaCostFunction, 6, 4, 3, 4, 3>(
new SpaCostFunction(constraint_pose)),
nullptr, C_fixed_frames.back().rotation(),
C_fixed_frames.back().translation(),
C_nodes.at(trajectory_id).at(node_index).rotation(),
C_nodes.at(trajectory_id).at(node_index).translation());
}
}
// Solve.
ceres::Solver::Summary summary;
ceres::Solve(
common::CreateCeresSolverOptions(options_.ceres_solver_options()),
&problem, &summary);
if (options_.log_solver_summary()) {
LOG(INFO) << summary.FullReport();
for (size_t trajectory_id = 0; trajectory_id != trajectory_data_.size();
++trajectory_id) {
if (trajectory_id != 0) {
LOG(INFO) << "Trajectory " << trajectory_id << ":";
}
LOG(INFO) << "Gravity was: "
<< trajectory_data_[trajectory_id].gravity_constant;
const auto& imu_calibration =
trajectory_data_[trajectory_id].imu_calibration;
LOG(INFO) << "IMU correction was: "
<< common::RadToDeg(2. * std::acos(imu_calibration[0]))
<< " deg (" << imu_calibration[0] << ", " << imu_calibration[1]
<< ", " << imu_calibration[2] << ", " << imu_calibration[3]
<< ")";
}
}
// Store the result.
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
++trajectory_id) {
for (size_t submap_index = 0;
submap_index != submap_data_[trajectory_id].size(); ++submap_index) {
submap_data_[trajectory_id][submap_index].pose =
C_submaps[trajectory_id][submap_index].ToRigid();
}
}
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
++trajectory_id) {
for (size_t node_index = 0; node_index != node_data_[trajectory_id].size();
++node_index) {
node_data_[trajectory_id][node_index].point_cloud_pose =
C_nodes[trajectory_id][node_index].ToRigid();
}
}
}
const std::vector<std::vector<NodeData>>& OptimizationProblem::node_data()
const {
return node_data_;
}
const std::vector<std::vector<SubmapData>>& OptimizationProblem::submap_data()
const {
return submap_data_;
}
} // namespace sparse_pose_graph
} // namespace mapping_3d
} // namespace cartographer